Loading…

Emerging Roles and New Paradigms in Signaling Mechanisms of Plant Cryptochromes

Analogous to the opsin-based receptors in animals, plants contain a diverse and elaborate set of photoreceptors to perceive a much wider spectrum of light and adapt to varying light conditions. Cryptochromes (CRYs), the blue/UV-A light sensing receptors, represent one such class of photoreceptors fo...

Full description

Saved in:
Bibliographic Details
Published in:Critical reviews in plant sciences 2017-03, Vol.36 (2), p.89-115
Main Authors: Mishra, Sushma, Khurana, Jitendra P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analogous to the opsin-based receptors in animals, plants contain a diverse and elaborate set of photoreceptors to perceive a much wider spectrum of light and adapt to varying light conditions. Cryptochromes (CRYs), the blue/UV-A light sensing receptors, represent one such class of photoreceptors found ubiquitously in plants. Although structurally similar to DNA photolyases which could repair UV-induced DNA damage, photoactivated CRYs, instead, initiate signal transduction pathways, which lead to gene expression changes and eventually more overt photomorphogenic responses. Apart from the well-established roles of CRYs in regulating seedling de-etiolation, flowering time, and circadian clock, recent reports have highlighted their roles in controlling other aspects of plant development as well. This review attempts to describe the novel/atypical roles of CRYs that have emerged in the past few years, and also present an account of the various signaling components involved in CRY signal transduction pathway.
ISSN:0735-2689
1549-7836
DOI:10.1080/07352689.2017.1348725