Loading…
The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited
By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1998-09, Vol.95 (20), p.11733-11738 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3 |
container_end_page | 11738 |
container_issue | 20 |
container_start_page | 11733 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 95 |
creator | M.-A. Teillet Lapointe, F. Le Douarin, N. M. |
description | By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin. |
doi_str_mv | 10.1073/pnas.95.20.11733 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201355419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>49256</jstor_id><sourcerecordid>49256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</originalsourceid><addsrcrecordid>eNqFkc9rFDEcxYModVu9iyAOHqSXWfNzMgEv0lorFBWpegyZzHfcWWaTMcms9b834y5L60FP4cv7vJdv8hB6QvCSYMlejc7EpRJLmmciGbuHFgQrUlZc4ftogTGVZc0pf4iOY1xjjJWo8RE6UlJknC_Qt-sVFJ9hMKn3Lq76MRYNpJ8Arvjgk7crH9rCuLa4GLwPxacMQtG74iuEBE2Yp3PYwuDHDbiUk7Z97BO0j9CDzgwRHu_PE_Tl4u312WV59fHd-7M3V6UVtUpl3cmuUcQIyplg2ELdViBooyyT1EpeA8GVVcRWUrCKdqoxXSMMa1qQDIhlJ-j1Lnecmg20Ni8RzKDH0G9M-KW96fVdxfUr_d1vNSUSq2x_ubcH_2OCmPSmjxaGwTjwU9SSKak4of8FSSUwV5XM4Iu_wLWfgst_oCkmTAhO5mvxDrLBxxigOyxMsJ6L1XOxWons0X-KzZZntx96MOybzPrzvT47D-qdhNN_E7qbhiHBTcro0x26jsmHA8sVFRX7DRifwbU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201355419</pqid></control><display><type>article</type><title>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>M.-A. Teillet ; Lapointe, F. ; Le Douarin, N. M.</creator><creatorcontrib>M.-A. Teillet ; Lapointe, F. ; Le Douarin, N. M.</creatorcontrib><description>By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.20.11733</identifier><identifier>PMID: 9751734</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Biological Sciences ; Biology ; Cell separation ; Chick Embryo ; Chickens ; Chimera ; Chimeras ; Developmental biology ; DNA-Binding Proteins - genetics ; Embryonic Induction - genetics ; Embryonic structures ; Embryos ; Endoderm ; Endoderm - cytology ; Endoderm - metabolism ; Gene Expression Regulation, Developmental ; Hedgehog Proteins ; Hepatocyte Nuclear Factor 3-beta ; In Situ Hybridization ; Neurons ; Notochord - cytology ; Notochord - embryology ; Notochord - metabolism ; Nuclear Proteins - genetics ; Proteins - genetics ; Quail ; Quails ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - embryology ; Spinal Cord - metabolism ; Tissue grafting ; Trans-Activators ; Transcription Factors ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-09, Vol.95 (20), p.11733-11738</ispartof><rights>Copyright 1993-1998 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 29, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</citedby><cites>FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/49256$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/49256$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9751734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>M.-A. Teillet</creatorcontrib><creatorcontrib>Lapointe, F.</creatorcontrib><creatorcontrib>Le Douarin, N. M.</creatorcontrib><title>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cell separation</subject><subject>Chick Embryo</subject><subject>Chickens</subject><subject>Chimera</subject><subject>Chimeras</subject><subject>Developmental biology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Embryonic Induction - genetics</subject><subject>Embryonic structures</subject><subject>Embryos</subject><subject>Endoderm</subject><subject>Endoderm - cytology</subject><subject>Endoderm - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Hedgehog Proteins</subject><subject>Hepatocyte Nuclear Factor 3-beta</subject><subject>In Situ Hybridization</subject><subject>Neurons</subject><subject>Notochord - cytology</subject><subject>Notochord - embryology</subject><subject>Notochord - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Proteins - genetics</subject><subject>Quail</subject><subject>Quails</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - metabolism</subject><subject>Tissue grafting</subject><subject>Trans-Activators</subject><subject>Transcription Factors</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEcxYModVu9iyAOHqSXWfNzMgEv0lorFBWpegyZzHfcWWaTMcms9b834y5L60FP4cv7vJdv8hB6QvCSYMlejc7EpRJLmmciGbuHFgQrUlZc4ftogTGVZc0pf4iOY1xjjJWo8RE6UlJknC_Qt-sVFJ9hMKn3Lq76MRYNpJ8Arvjgk7crH9rCuLa4GLwPxacMQtG74iuEBE2Yp3PYwuDHDbiUk7Z97BO0j9CDzgwRHu_PE_Tl4u312WV59fHd-7M3V6UVtUpl3cmuUcQIyplg2ELdViBooyyT1EpeA8GVVcRWUrCKdqoxXSMMa1qQDIhlJ-j1Lnecmg20Ni8RzKDH0G9M-KW96fVdxfUr_d1vNSUSq2x_ubcH_2OCmPSmjxaGwTjwU9SSKak4of8FSSUwV5XM4Iu_wLWfgst_oCkmTAhO5mvxDrLBxxigOyxMsJ6L1XOxWons0X-KzZZntx96MOybzPrzvT47D-qdhNN_E7qbhiHBTcro0x26jsmHA8sVFRX7DRifwbU</recordid><startdate>19980929</startdate><enddate>19980929</enddate><creator>M.-A. Teillet</creator><creator>Lapointe, F.</creator><creator>Le Douarin, N. M.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980929</creationdate><title>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</title><author>M.-A. Teillet ; Lapointe, F. ; Le Douarin, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cell separation</topic><topic>Chick Embryo</topic><topic>Chickens</topic><topic>Chimera</topic><topic>Chimeras</topic><topic>Developmental biology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Embryonic Induction - genetics</topic><topic>Embryonic structures</topic><topic>Embryos</topic><topic>Endoderm</topic><topic>Endoderm - cytology</topic><topic>Endoderm - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Hedgehog Proteins</topic><topic>Hepatocyte Nuclear Factor 3-beta</topic><topic>In Situ Hybridization</topic><topic>Neurons</topic><topic>Notochord - cytology</topic><topic>Notochord - embryology</topic><topic>Notochord - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Proteins - genetics</topic><topic>Quail</topic><topic>Quails</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - metabolism</topic><topic>Tissue grafting</topic><topic>Trans-Activators</topic><topic>Transcription Factors</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M.-A. Teillet</creatorcontrib><creatorcontrib>Lapointe, F.</creatorcontrib><creatorcontrib>Le Douarin, N. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M.-A. Teillet</au><au>Lapointe, F.</au><au>Le Douarin, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-09-29</date><risdate>1998</risdate><volume>95</volume><issue>20</issue><spage>11733</spage><epage>11738</epage><pages>11733-11738</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9751734</pmid><doi>10.1073/pnas.95.20.11733</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1998-09, Vol.95 (20), p.11733-11738 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201355419 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Biological Sciences Biology Cell separation Chick Embryo Chickens Chimera Chimeras Developmental biology DNA-Binding Proteins - genetics Embryonic Induction - genetics Embryonic structures Embryos Endoderm Endoderm - cytology Endoderm - metabolism Gene Expression Regulation, Developmental Hedgehog Proteins Hepatocyte Nuclear Factor 3-beta In Situ Hybridization Neurons Notochord - cytology Notochord - embryology Notochord - metabolism Nuclear Proteins - genetics Proteins - genetics Quail Quails Spinal cord Spinal Cord - cytology Spinal Cord - embryology Spinal Cord - metabolism Tissue grafting Trans-Activators Transcription Factors Vertebrates |
title | The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relationships%20between%20Notochord%20and%20Floor%20Plate%20in%20Vertebrate%20Development%20Revisited&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M.-A.%20Teillet&rft.date=1998-09-29&rft.volume=95&rft.issue=20&rft.spage=11733&rft.epage=11738&rft.pages=11733-11738&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.20.11733&rft_dat=%3Cjstor_proqu%3E49256%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201355419&rft_id=info:pmid/9751734&rft_jstor_id=49256&rfr_iscdi=true |