Loading…

The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited

By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1998-09, Vol.95 (20), p.11733-11738
Main Authors: M.-A. Teillet, Lapointe, F., Le Douarin, N. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3
cites cdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3
container_end_page 11738
container_issue 20
container_start_page 11733
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 95
creator M.-A. Teillet
Lapointe, F.
Le Douarin, N. M.
description By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.
doi_str_mv 10.1073/pnas.95.20.11733
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201355419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>49256</jstor_id><sourcerecordid>49256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</originalsourceid><addsrcrecordid>eNqFkc9rFDEcxYModVu9iyAOHqSXWfNzMgEv0lorFBWpegyZzHfcWWaTMcms9b834y5L60FP4cv7vJdv8hB6QvCSYMlejc7EpRJLmmciGbuHFgQrUlZc4ftogTGVZc0pf4iOY1xjjJWo8RE6UlJknC_Qt-sVFJ9hMKn3Lq76MRYNpJ8Arvjgk7crH9rCuLa4GLwPxacMQtG74iuEBE2Yp3PYwuDHDbiUk7Z97BO0j9CDzgwRHu_PE_Tl4u312WV59fHd-7M3V6UVtUpl3cmuUcQIyplg2ELdViBooyyT1EpeA8GVVcRWUrCKdqoxXSMMa1qQDIhlJ-j1Lnecmg20Ni8RzKDH0G9M-KW96fVdxfUr_d1vNSUSq2x_ubcH_2OCmPSmjxaGwTjwU9SSKak4of8FSSUwV5XM4Iu_wLWfgst_oCkmTAhO5mvxDrLBxxigOyxMsJ6L1XOxWons0X-KzZZntx96MOybzPrzvT47D-qdhNN_E7qbhiHBTcro0x26jsmHA8sVFRX7DRifwbU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201355419</pqid></control><display><type>article</type><title>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>M.-A. Teillet ; Lapointe, F. ; Le Douarin, N. M.</creator><creatorcontrib>M.-A. Teillet ; Lapointe, F. ; Le Douarin, N. M.</creatorcontrib><description>By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.20.11733</identifier><identifier>PMID: 9751734</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Biological Sciences ; Biology ; Cell separation ; Chick Embryo ; Chickens ; Chimera ; Chimeras ; Developmental biology ; DNA-Binding Proteins - genetics ; Embryonic Induction - genetics ; Embryonic structures ; Embryos ; Endoderm ; Endoderm - cytology ; Endoderm - metabolism ; Gene Expression Regulation, Developmental ; Hedgehog Proteins ; Hepatocyte Nuclear Factor 3-beta ; In Situ Hybridization ; Neurons ; Notochord - cytology ; Notochord - embryology ; Notochord - metabolism ; Nuclear Proteins - genetics ; Proteins - genetics ; Quail ; Quails ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - embryology ; Spinal Cord - metabolism ; Tissue grafting ; Trans-Activators ; Transcription Factors ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-09, Vol.95 (20), p.11733-11738</ispartof><rights>Copyright 1993-1998 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 29, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</citedby><cites>FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/49256$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/49256$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9751734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>M.-A. Teillet</creatorcontrib><creatorcontrib>Lapointe, F.</creatorcontrib><creatorcontrib>Le Douarin, N. M.</creatorcontrib><title>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cell separation</subject><subject>Chick Embryo</subject><subject>Chickens</subject><subject>Chimera</subject><subject>Chimeras</subject><subject>Developmental biology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Embryonic Induction - genetics</subject><subject>Embryonic structures</subject><subject>Embryos</subject><subject>Endoderm</subject><subject>Endoderm - cytology</subject><subject>Endoderm - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Hedgehog Proteins</subject><subject>Hepatocyte Nuclear Factor 3-beta</subject><subject>In Situ Hybridization</subject><subject>Neurons</subject><subject>Notochord - cytology</subject><subject>Notochord - embryology</subject><subject>Notochord - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Proteins - genetics</subject><subject>Quail</subject><subject>Quails</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - metabolism</subject><subject>Tissue grafting</subject><subject>Trans-Activators</subject><subject>Transcription Factors</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEcxYModVu9iyAOHqSXWfNzMgEv0lorFBWpegyZzHfcWWaTMcms9b834y5L60FP4cv7vJdv8hB6QvCSYMlejc7EpRJLmmciGbuHFgQrUlZc4ftogTGVZc0pf4iOY1xjjJWo8RE6UlJknC_Qt-sVFJ9hMKn3Lq76MRYNpJ8Arvjgk7crH9rCuLa4GLwPxacMQtG74iuEBE2Yp3PYwuDHDbiUk7Z97BO0j9CDzgwRHu_PE_Tl4u312WV59fHd-7M3V6UVtUpl3cmuUcQIyplg2ELdViBooyyT1EpeA8GVVcRWUrCKdqoxXSMMa1qQDIhlJ-j1Lnecmg20Ni8RzKDH0G9M-KW96fVdxfUr_d1vNSUSq2x_ubcH_2OCmPSmjxaGwTjwU9SSKak4of8FSSUwV5XM4Iu_wLWfgst_oCkmTAhO5mvxDrLBxxigOyxMsJ6L1XOxWons0X-KzZZntx96MOybzPrzvT47D-qdhNN_E7qbhiHBTcro0x26jsmHA8sVFRX7DRifwbU</recordid><startdate>19980929</startdate><enddate>19980929</enddate><creator>M.-A. Teillet</creator><creator>Lapointe, F.</creator><creator>Le Douarin, N. M.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980929</creationdate><title>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</title><author>M.-A. Teillet ; Lapointe, F. ; Le Douarin, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cell separation</topic><topic>Chick Embryo</topic><topic>Chickens</topic><topic>Chimera</topic><topic>Chimeras</topic><topic>Developmental biology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Embryonic Induction - genetics</topic><topic>Embryonic structures</topic><topic>Embryos</topic><topic>Endoderm</topic><topic>Endoderm - cytology</topic><topic>Endoderm - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Hedgehog Proteins</topic><topic>Hepatocyte Nuclear Factor 3-beta</topic><topic>In Situ Hybridization</topic><topic>Neurons</topic><topic>Notochord - cytology</topic><topic>Notochord - embryology</topic><topic>Notochord - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Proteins - genetics</topic><topic>Quail</topic><topic>Quails</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - metabolism</topic><topic>Tissue grafting</topic><topic>Trans-Activators</topic><topic>Transcription Factors</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M.-A. Teillet</creatorcontrib><creatorcontrib>Lapointe, F.</creatorcontrib><creatorcontrib>Le Douarin, N. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M.-A. Teillet</au><au>Lapointe, F.</au><au>Le Douarin, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-09-29</date><risdate>1998</risdate><volume>95</volume><issue>20</issue><spage>11733</spage><epage>11738</epage><pages>11733-11738</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>By using the quail-chicken chimera system, we have previously shown that during development of the spinal cord, floor plate cells are inserted between neural progenitors giving rise to the alar plates. These cells are derived from the regressing Hensen's node or cordoneural hinge (HN-CNH). This common population of HN-CNH cells gives rise to three types of midline descendants: notochord, floor plate, and dorsal endoderm. Here we find that HNF3β , an important gene in the development of the midline structures, is continuously expressed in the HN-CNH cells and their derivatives, floor plate, notochord, and dorsal endoderm. Experiments in which the notochord was removed in the posterior region of either normal chicken or of quail-chicken chimeras in which a quail HN had been grafted showed that the floor plate develops in a cell-autonomous manner in the absence of notochord. Absence of floor plate observed at the posterior level of the excision results from removal of HN-CNH material, including the future floor plate, and not from the lack of an inductive signal of notochord origin.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9751734</pmid><doi>10.1073/pnas.95.20.11733</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1998-09, Vol.95 (20), p.11733-11738
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201355419
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Biological Sciences
Biology
Cell separation
Chick Embryo
Chickens
Chimera
Chimeras
Developmental biology
DNA-Binding Proteins - genetics
Embryonic Induction - genetics
Embryonic structures
Embryos
Endoderm
Endoderm - cytology
Endoderm - metabolism
Gene Expression Regulation, Developmental
Hedgehog Proteins
Hepatocyte Nuclear Factor 3-beta
In Situ Hybridization
Neurons
Notochord - cytology
Notochord - embryology
Notochord - metabolism
Nuclear Proteins - genetics
Proteins - genetics
Quail
Quails
Spinal cord
Spinal Cord - cytology
Spinal Cord - embryology
Spinal Cord - metabolism
Tissue grafting
Trans-Activators
Transcription Factors
Vertebrates
title The Relationships between Notochord and Floor Plate in Vertebrate Development Revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Relationships%20between%20Notochord%20and%20Floor%20Plate%20in%20Vertebrate%20Development%20Revisited&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M.-A.%20Teillet&rft.date=1998-09-29&rft.volume=95&rft.issue=20&rft.spage=11733&rft.epage=11738&rft.pages=11733-11738&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.20.11733&rft_dat=%3Cjstor_proqu%3E49256%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c589t-8f7fb91a5243530ce8d6e52b9c372c748e106c91c675362f9bafb5a3bde73e1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201355419&rft_id=info:pmid/9751734&rft_jstor_id=49256&rfr_iscdi=true