Loading…
On the Activation of Soluble Guanylyl Cyclase by Nitric Oxide
Soluble guanylyl cyclase (sGC) is the major cellular receptor for the intercellular messenger nitric oxide (NO) and mediates a wide range of physiological effects through elevation of intracellular cGMP levels. Critical to our understanding of how NO signals are decoded by receptive cells and transl...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2002-01, Vol.99 (1), p.507-510 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soluble guanylyl cyclase (sGC) is the major cellular receptor for the intercellular messenger nitric oxide (NO) and mediates a wide range of physiological effects through elevation of intracellular cGMP levels. Critical to our understanding of how NO signals are decoded by receptive cells and translated into a useful physiological response is an appreciation of the molecular and kinetic details of the mechanism by which NO activates sGC. It is known that NO binds to a haem prosthetic group on the receptor and triggers a conformational change that increases the catalysis of cGMP synthesis by several hundred-fold. The haem is covalently attached to sGC at His-105 of the β1 subunit, and it was thought previously that activation of sGC by NO occurs in two steps: binding of NO to the haem to form a biliganded state and then rupture of the bond to His-105 triggering an increase in catalytic activity. A recent investigation of the kinetics of sGC activation [Zhao, Y., Brandish, P. E., Ballou, D. P. & Marletta, M. A. (1999) Proc. Natl. Acad. Sci. USA, 96, 14753-14758], however, proposed an additional mechanism by which NO regulates sGC activity, namely, by influencing the rate of cleavage of the His-105 bond. The existence of a second (unidentified) NO-binding site on the enzyme was hypothesized and suggested to be fundamental to cellular NO-signal transduction. Here, we show that it is unnecessary to postulate any such additional mechanism because the results obtained are predicted by the simpler model of sGC activation with a single NO-binding event. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.012368499 |