Loading…
Artificial bee colony-based support vector machines with feature selection and parameter optimization for rule extraction
Support vector machine (SVM) is a state-of-art classification tool with good accuracy due to its ability to generate nonlinear model. However, the nonlinear models generated are typically regarded as incomprehensible black-box models. This lack of explanatory ability is a serious problem for practic...
Saved in:
Published in: | Knowledge and information systems 2018-04, Vol.55 (1), p.253-274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Support vector machine (SVM) is a state-of-art classification tool with good accuracy due to its ability to generate nonlinear model. However, the nonlinear models generated are typically regarded as incomprehensible black-box models. This lack of explanatory ability is a serious problem for practical SVM applications which require comprehensibility. Therefore, this study applies a C5 decision tree (DT) to extract rules from SVM result. In addition, a metaheuristic algorithm is employed for the feature selection. Both SVM and C5 DT require expensive computation. Applying these two algorithms simultaneously for high-dimensional data will increase the computational cost. This study applies artificial bee colony optimization (ABC) algorithm to select the important features. The proposed algorithm ABC–SVM–DT is applied to extract comprehensible rules from SVMs. The ABC algorithm is applied to implement feature selection and parameter optimization before SVM–DT. The proposed algorithm is evaluated using eight datasets to demonstrate the effectiveness of the proposed algorithm. The result shows that the classification accuracy and complexity of the final decision tree can be improved simultaneously by the proposed ABC–SVM–DT algorithm, compared with genetic algorithm and particle swarm optimization algorithm. |
---|---|
ISSN: | 0219-1377 0219-3116 |
DOI: | 10.1007/s10115-017-1083-8 |