Loading…
Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants
The Fisher–Bingham distribution is obtained when a multivariate normal random vector is conditioned to have unit length. Its normalising constant can be expressed as an elementary function multiplied by the density, evaluated at 1, of a linear combination of independent noncentral χ12 random variabl...
Saved in:
Published in: | Biometrika 2005-06, Vol.92 (2), p.465-476 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Fisher–Bingham distribution is obtained when a multivariate normal random vector is conditioned to have unit length. Its normalising constant can be expressed as an elementary function multiplied by the density, evaluated at 1, of a linear combination of independent noncentral χ12 random variables. Hence we may approximate the normalising constant by applying a saddlepoint approximation to this density. Three such approximations, implementation of each of which is straightforward, are investigated: the first-order saddlepoint density approximation, the second-order saddlepoint density approximation and a variant of the second-order approximation which has proved slightly more accurate than the other two. The numerical and theoretical results we present showthat this approach provides highly accurate approximations in a broad spectrum of cases. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/92.2.465 |