Loading…

On Forbidden Induced Subgraphs for Unit Disk Graphs

A unit disk graph is the intersection graph of disks of equal radii in the plane. The class of unit disk graphs is hereditary, and therefore admits a characterization in terms of minimal forbidden induced subgraphs. In spite of quite active study of unit disk graphs very little is known about minima...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2018-07, Vol.60 (1), p.57-97
Main Authors: Atminas, Aistis, Zamaraev, Viktor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A unit disk graph is the intersection graph of disks of equal radii in the plane. The class of unit disk graphs is hereditary, and therefore admits a characterization in terms of minimal forbidden induced subgraphs. In spite of quite active study of unit disk graphs very little is known about minimal forbidden induced subgraphs for this class. We found only finitely many minimal non-unit disk graphs in the literature. In this paper we study in a systematic way forbidden induced subgraphs for the class of unit disk graphs. We develop several structural and geometrical tools, and use them to reveal infinitely many new minimal non-unit disk graphs. Further we use these results to investigate structure of co-bipartite unit disk graphs. In particular, we give structural characterization of those co-bipartite unit disk graphs whose edges between parts form a C 4 -free bipartite graph, and show that bipartite complements of these graphs are also unit disk graphs. Our results lead us to propose a conjecture that the class of co-bipartite unit disk graphs is closed under bipartite complementation.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-018-9968-1