Loading…

Hysteresis Modelling of Mechanical Systems at Nonstationary Vibrations

This paper considers and reviews a number of known phenomenological models, used to describe hysteretic effects of various natures. Such models consider hysteresis system as a “black box” with experimentally known input and output, related via formal mathematical dependence to parameters obtained fr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-15
Main Authors: Danilin, A. N., Shalashilin, A. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers and reviews a number of known phenomenological models, used to describe hysteretic effects of various natures. Such models consider hysteresis system as a “black box” with experimentally known input and output, related via formal mathematical dependence to parameters obtained from the best fit to experimental data. In particular, we focus on the broadly used Bouc-Wen and similar phenomenological models. The current paper shows the conditions which the Bouc-Wen model must meet. An alternative mathematical model is suggested where the force and kinematic parameters are related by a first-order differential equation. In contrast to the Bouc-Wen model, the right hand side is a polynomial with two variables representing hysteresis trajectories in the process diagram. This approach ensures correct asymptotic approximation of the solution to the enclosing hysteresis cycle curves. The coefficients in the right side are also determined experimentally from the hysteresis cycle data during stable oscillations. The proposed approach allows us to describe hysteretic trajectory with an arbitrary starting point within the enclosed cycle using only one differential equation. The model is applied to the description of forced vibrations of a low-frequency pendulum damper.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/7102796