Loading…

On generalized S -quasinormal and generalized subnormal subgroups of finite groups

Let G be a finite group and H a subgroup of G. We say that H is a generalized subnormal (respectively generalized S-quasinormal) subgroup of G if H = for some modular subgroup A and subnormal (respectively S-quasinormal) subgroup B of G. If [Formula omitted.] , where Mi is a maximal subgroup of Mi-...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2018-04, Vol.46 (4), p.1758-1769
Main Authors: Hu, Bin, Huang, Jianhong, Skiba, Alexander N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let G be a finite group and H a subgroup of G. We say that H is a generalized subnormal (respectively generalized S-quasinormal) subgroup of G if H = for some modular subgroup A and subnormal (respectively S-quasinormal) subgroup B of G. If [Formula omitted.] , where Mi is a maximal subgroup of Mi-1 for all i = 1,...,n, then Mn (n>0) is an n-maximal subgroup of G. In this paper, we study finite groups whose n-maximal subgroups are generalized subnormal or generalized S-quasinormal.
ISSN:0092-7872
1532-4125
DOI:10.1080/00927872.2017.1357076