Loading…
On generalized S -quasinormal and generalized subnormal subgroups of finite groups
Let G be a finite group and H a subgroup of G. We say that H is a generalized subnormal (respectively generalized S-quasinormal) subgroup of G if H = for some modular subgroup A and subnormal (respectively S-quasinormal) subgroup B of G. If [Formula omitted.] , where Mi is a maximal subgroup of Mi-...
Saved in:
Published in: | Communications in algebra 2018-04, Vol.46 (4), p.1758-1769 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a finite group and H a subgroup of G. We say that H is a generalized subnormal (respectively generalized S-quasinormal) subgroup of G if H = for some modular subgroup A and subnormal (respectively S-quasinormal) subgroup B of G. If [Formula omitted.] , where Mi is a maximal subgroup of Mi-1 for all i = 1,...,n, then Mn (n>0) is an n-maximal subgroup of G. In this paper, we study finite groups whose n-maximal subgroups are generalized subnormal or generalized S-quasinormal. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927872.2017.1357076 |