Loading…

Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia

Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N 2 H 4 ) or ammonia (NH 3 ). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH 3 ) at temperatures from 15...

Full description

Saved in:
Bibliographic Details
Published in:Russian microelectronics 2018-03, Vol.47 (2), p.118-130
Main Authors: Abdulagatov, A. I., Ramazanov, Sh. M., Dallaev, R. S., Murliev, E. K., Palchaev, D. K., Rabadanov, M. Kh, Abdulagatov, I. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23
cites cdi_FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23
container_end_page 130
container_issue 2
container_start_page 118
container_title Russian microelectronics
container_volume 47
creator Abdulagatov, A. I.
Ramazanov, Sh. M.
Dallaev, R. S.
Murliev, E. K.
Palchaev, D. K.
Rabadanov, M. Kh
Abdulagatov, I. M.
description Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N 2 H 4 ) or ammonia (NH 3 ). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH 3 ) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N 2 H 4 and NH 3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm 3 , 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm 3 , 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N 2 H 4 was lower than for NH 3 . In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.
doi_str_mv 10.1134/S1063739718020026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2021438191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021438191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsscAQ8NmJk4xR-VOkCgbaOXLiS3HV2MVOhvDpSVUQA2K6k97vvTs9Qi6B3QKI-O4NmBSpyFPIGGeMyyMyAcmySMSQHI_7KEd7_ZSchbBhDBiTckKw6FxrarpQA3p6jzsXTGecpa6hxbZvje1b-mI6bzTSVTB2TZfehGttsHsftqo12t2oH1BZTeeD9urTWKTO06JtnTXqnJw0ahvw4ntOyerxYTmbR4vXp-dZsYhqnqcyiivNqwxjmbJEaYZCCKVS2VQx6IqjxASFkvvXtZCAAFJArSuVYK7qRnExJVeH3J13Hz2Grty43tvxZMkZh1hkkMNIwYGqvQvBY1PuvGmVH0pg5b7N8k-bo4cfPGFk7Rr9b_L_pi8BKXcP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021438191</pqid></control><display><type>article</type><title>Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia</title><source>Springer Link</source><creator>Abdulagatov, A. I. ; Ramazanov, Sh. M. ; Dallaev, R. S. ; Murliev, E. K. ; Palchaev, D. K. ; Rabadanov, M. Kh ; Abdulagatov, I. M.</creator><creatorcontrib>Abdulagatov, A. I. ; Ramazanov, Sh. M. ; Dallaev, R. S. ; Murliev, E. K. ; Palchaev, D. K. ; Rabadanov, M. Kh ; Abdulagatov, I. M.</creatorcontrib><description>Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N 2 H 4 ) or ammonia (NH 3 ). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH 3 ) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N 2 H 4 and NH 3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm 3 , 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm 3 , 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N 2 H 4 was lower than for NH 3 . In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.</description><identifier>ISSN: 1063-7397</identifier><identifier>EISSN: 1608-3415</identifier><identifier>DOI: 10.1134/S1063739718020026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Aluminum nitride ; Ammonia ; Atomic layer epitaxy ; Bulk density ; Electrical Engineering ; Engineering ; Impurities ; Surface reactions ; Thermochemistry</subject><ispartof>Russian microelectronics, 2018-03, Vol.47 (2), p.118-130</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23</citedby><cites>FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdulagatov, A. I.</creatorcontrib><creatorcontrib>Ramazanov, Sh. M.</creatorcontrib><creatorcontrib>Dallaev, R. S.</creatorcontrib><creatorcontrib>Murliev, E. K.</creatorcontrib><creatorcontrib>Palchaev, D. K.</creatorcontrib><creatorcontrib>Rabadanov, M. Kh</creatorcontrib><creatorcontrib>Abdulagatov, I. M.</creatorcontrib><title>Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia</title><title>Russian microelectronics</title><addtitle>Russ Microelectron</addtitle><description>Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N 2 H 4 ) or ammonia (NH 3 ). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH 3 ) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N 2 H 4 and NH 3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm 3 , 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm 3 , 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N 2 H 4 was lower than for NH 3 . In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Ammonia</subject><subject>Atomic layer epitaxy</subject><subject>Bulk density</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Impurities</subject><subject>Surface reactions</subject><subject>Thermochemistry</subject><issn>1063-7397</issn><issn>1608-3415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgsscAQ8NmJk4xR-VOkCgbaOXLiS3HV2MVOhvDpSVUQA2K6k97vvTs9Qi6B3QKI-O4NmBSpyFPIGGeMyyMyAcmySMSQHI_7KEd7_ZSchbBhDBiTckKw6FxrarpQA3p6jzsXTGecpa6hxbZvje1b-mI6bzTSVTB2TZfehGttsHsftqo12t2oH1BZTeeD9urTWKTO06JtnTXqnJw0ahvw4ntOyerxYTmbR4vXp-dZsYhqnqcyiivNqwxjmbJEaYZCCKVS2VQx6IqjxASFkvvXtZCAAFJArSuVYK7qRnExJVeH3J13Hz2Grty43tvxZMkZh1hkkMNIwYGqvQvBY1PuvGmVH0pg5b7N8k-bo4cfPGFk7Rr9b_L_pi8BKXcP</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Abdulagatov, A. I.</creator><creator>Ramazanov, Sh. M.</creator><creator>Dallaev, R. S.</creator><creator>Murliev, E. K.</creator><creator>Palchaev, D. K.</creator><creator>Rabadanov, M. Kh</creator><creator>Abdulagatov, I. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia</title><author>Abdulagatov, A. I. ; Ramazanov, Sh. M. ; Dallaev, R. S. ; Murliev, E. K. ; Palchaev, D. K. ; Rabadanov, M. Kh ; Abdulagatov, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Ammonia</topic><topic>Atomic layer epitaxy</topic><topic>Bulk density</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Impurities</topic><topic>Surface reactions</topic><topic>Thermochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdulagatov, A. I.</creatorcontrib><creatorcontrib>Ramazanov, Sh. M.</creatorcontrib><creatorcontrib>Dallaev, R. S.</creatorcontrib><creatorcontrib>Murliev, E. K.</creatorcontrib><creatorcontrib>Palchaev, D. K.</creatorcontrib><creatorcontrib>Rabadanov, M. Kh</creatorcontrib><creatorcontrib>Abdulagatov, I. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian microelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdulagatov, A. I.</au><au>Ramazanov, Sh. M.</au><au>Dallaev, R. S.</au><au>Murliev, E. K.</au><au>Palchaev, D. K.</au><au>Rabadanov, M. Kh</au><au>Abdulagatov, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia</atitle><jtitle>Russian microelectronics</jtitle><stitle>Russ Microelectron</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>47</volume><issue>2</issue><spage>118</spage><epage>130</epage><pages>118-130</pages><issn>1063-7397</issn><eissn>1608-3415</eissn><abstract>Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N 2 H 4 ) or ammonia (NH 3 ). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH 3 ) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N 2 H 4 and NH 3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm 3 , 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm 3 , 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N 2 H 4 was lower than for NH 3 . In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063739718020026</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7397
ispartof Russian microelectronics, 2018-03, Vol.47 (2), p.118-130
issn 1063-7397
1608-3415
language eng
recordid cdi_proquest_journals_2021438191
source Springer Link
subjects Aluminum
Aluminum nitride
Ammonia
Atomic layer epitaxy
Bulk density
Electrical Engineering
Engineering
Impurities
Surface reactions
Thermochemistry
title Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Layer%20Deposition%20of%20Aluminum%20Nitride%20Using%20Tris(diethylamido)aluminum%20and%20Hydrazine%20or%20Ammonia&rft.jtitle=Russian%20microelectronics&rft.au=Abdulagatov,%20A.%20I.&rft.date=2018-03-01&rft.volume=47&rft.issue=2&rft.spage=118&rft.epage=130&rft.pages=118-130&rft.issn=1063-7397&rft.eissn=1608-3415&rft_id=info:doi/10.1134/S1063739718020026&rft_dat=%3Cproquest_cross%3E2021438191%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2976-4bd2b8e46705ad0e333aa76fb41db2e6e5e3a60100d361e11631cdba5e9acfa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021438191&rft_id=info:pmid/&rfr_iscdi=true