Loading…
Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors
Two zeolite templated carbons (ZTC) with comparable structure and different surface chemistry have been synthesized by chemical vapor deposition of different precursors, producing a non-doped and a N-doped carbon material (4 at. % XPS) in which most of the functionalities are quaternary N. A larger...
Saved in:
Published in: | Carbon (New York) 2018-04, Vol.129, p.510-519 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two zeolite templated carbons (ZTC) with comparable structure and different surface chemistry have been synthesized by chemical vapor deposition of different precursors, producing a non-doped and a N-doped carbon material (4 at. % XPS) in which most of the functionalities are quaternary N.
A larger specific capacitance (farads per surface area) has been measured in acid electrolyte for the N-doped ZTC, that can be related to an improved wettability due to the presence of nitrogen and oxygen. The capacitance of N-doped ZTC is lower in alkaline electrolyte, probably due to the loss of electrochemical activity of certain oxygen functionalities. Interestingly, the electro-oxidation process of N-ZTC implies lower irreversible currents (providing higher electrochemical stability) than for ZTC. The presence of quaternary nitrogen greatly improves the electric conductivity of N-ZTC, which shows a superior rate performance.
ZTC and N-ZTC capacitors were constructed using 1 M H2SO4. Under the same conditions, N-doped ZTC based capacitor has higher energy density, 6.7 vs 5.9 W h/kg. The power density of N-ZTC is four times higher, producing an outstanding maximum power of 98 kW/kg. These results provide clear evidences of the advantages of doping advanced porous carbon materials with nitrogen functionalities.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2017.12.050 |