Loading…
The inverse scattering problem by an elastic inclusion
In this work we consider the inverse elastic scattering problem by an inclusion in two dimensions. The elastic inclusion is placed in an isotropic homogeneous elastic medium. The inverse problem, using the third Betti’s formula (direct method), is equivalent to a system of four integral equations th...
Saved in:
Published in: | Advances in computational mathematics 2018-04, Vol.44 (2), p.453-476 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we consider the inverse elastic scattering problem by an inclusion in two dimensions. The elastic inclusion is placed in an isotropic homogeneous elastic medium. The inverse problem, using the third Betti’s formula (direct method), is equivalent to a system of four integral equations that are non linear with respect to the unknown boundary. Two equations are on the boundary and two on the unit circle where the far-field patterns of the scattered waves lie. We solve iteratively the system of integral equations by linearising only the far-field equations. Numerical results are presented that illustrate the feasibility of the proposed method. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-017-9550-z |