Loading…

Drying kinetics of Philippine nickel laterite by microwave heating

In this study, microwave heating was used to dry nickel laterite, which contains significant quantities of free water, crystal water, and hydroxy water. The results show that the main phase of crystal water is Ca3Al6Si10O32(H2O)13, and the main phases of hydroxy water are FeO(OH) and Mg5(Al, Cr)AlSi...

Full description

Saved in:
Bibliographic Details
Published in:Drying technology 2018-05, Vol.36 (7), p.849-858
Main Authors: Lv, Wei, Fan, Gangqiang, Lv, Xueming, Lv, Xuewei, Hu, Meilong, Zhang, Shengfu, Qiu, Guibao, Bai, Chenguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, microwave heating was used to dry nickel laterite, which contains significant quantities of free water, crystal water, and hydroxy water. The results show that the main phase of crystal water is Ca3Al6Si10O32(H2O)13, and the main phases of hydroxy water are FeO(OH) and Mg5(Al, Cr)AlSi3O10(OH)8. The microwave drying process of nickel laterite can be divided into two stages: the removal of free water and the coupled removal of free water, crystal water, and hydroxy water. The effect of particle size and microwave power output were studied, and these indicate that the drying time and specific energy consumption decrease with increasing particle diameter and microwave power. The effective diffusivity and activation energy were calculated, and these are larger in the second stage than that in the first stage. The activation energies are 27.66 and 32.80 W/g for the first and second stages, respectively. The phase transition of the product, schematic drying mechanism, and feasibility analysis of the microwave drying process are also discussed.
ISSN:0737-3937
1532-2300
DOI:10.1080/07373937.2017.1359183