Loading…

Structural Constraint Data Association for Online Multi-object Tracking

Online two-dimensional (2D) multi-object tracking (MOT) is a challenging task when the objects of interest have similar appearances. In that case, the motion of objects is another helpful cue for tracking and discriminating multiple objects. However, when using a single moving camera for online 2D M...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision 2019-01, Vol.127 (1), p.1-21
Main Authors: Yoon, Ju Hong, Lee, Chang-Ryeol, Yang, Ming-Hsuan, Yoon, Kuk-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Online two-dimensional (2D) multi-object tracking (MOT) is a challenging task when the objects of interest have similar appearances. In that case, the motion of objects is another helpful cue for tracking and discriminating multiple objects. However, when using a single moving camera for online 2D MOT, observable motion cues are contaminated by global camera movements and, thus, are not always predictable. To deal with unexpected camera motion, we propose a new data association method that effectively exploits structural constraints in the presence of large camera motion. In addition, to reduce incorrect associations with mis-detections and false positives, we develop a novel event aggregation method to integrate assignment costs computed by structural constraints. We also utilize structural constraints to track missing objects when they are re-detected again. By doing this, identities of the missing objects can be retained continuously. Experimental results validated the effectiveness of the proposed data association algorithm under unexpected camera motions. In addition, tracking results on a large number of benchmark datasets demonstrated that the proposed MOT algorithm performs robustly and favorably against various online methods in terms of several quantitative metrics, and that its performance is comparable to offline methods.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-018-1087-1