Loading…
Characterization of static air foil thrust bearing performance: an elasto-gasdynamic analysis for aligned, distorted and misaligned operating conditions
The performance of air foil thrust bearings (AFTBs) is studied for aligned, distorted and misaligned operating conditions on the basis of a very detailed numerical model for the foil sandwich. The exact geometry of the bump foil is modeled by a Reissner–Mindlin-type shell theory. A penalty-type cont...
Saved in:
Published in: | Archive of applied mechanics (1991) 2018-05, Vol.88 (5), p.705-728 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of air foil thrust bearings (AFTBs) is studied for aligned, distorted and misaligned operating conditions on the basis of a very detailed numerical model for the foil sandwich. The exact geometry of the bump foil is modeled by a Reissner–Mindlin-type shell theory. A penalty-type contact formulation including frictional effects is applied for the contact between top foil and bump foil as well as between bump foil and base plate. The minimal film thickness within the thrust bearing is used as a criterion for comparing different air foil thrust bearings with rigid thrust bearings. If the rotor disk and the base plate are perfectly parallel (aligned conditions), AFTBs are proved to have always a lower load capacity than (optimized) rigid thrust bearings due to unequal bump foil deformations and top foil sagging effects. This finding is in contradiction to previous works based on simplified foil models, which claimed AFTBs to be superior to rigid thrust bearings. Furthermore, for both operating conditions—thermally induced distortions of the rotor disk as well as misalignment—an individual pad of an AFTB is found to be unable to effectively compensate for the disturbance in the gap function. Consequently, a tailoring of the stiffness distribution in the AFTB is shown to be of limiting effect. Instead, the overall compliance of the pads in an AFTB is demonstrated to be the essential reason for the superior behavior of AFTBs to rigid thrust bearings under misaligned conditions. |
---|---|
ISSN: | 0939-1533 1432-0681 |
DOI: | 10.1007/s00419-017-1337-7 |