Loading…

Influence of Cell Topology on Mode I Fracture Toughness of Cellular Structures

A cellular structure is made up by an interconnected network of beams or plates which forms the edges and faces of cells. This paper proposes three different micromechanical models to determine the fracture toughness values of cellular materials such as rigid polyurethane foams using the finite elem...

Full description

Saved in:
Bibliographic Details
Published in:Physical mesomechanics 2018-03, Vol.21 (2), p.178-186
Main Authors: Linul, E., Serban, D. A., Marsavina, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A cellular structure is made up by an interconnected network of beams or plates which forms the edges and faces of cells. This paper proposes three different micromechanical models to determine the fracture toughness values of cellular materials such as rigid polyurethane foams using the finite element micromechanical analysis and Abaqus software. This study was carried out for mode I fracture and fracture toughness was predicted based on linear elastic fracture mechanics. Models of two-dimensional cellular solids with square, hexagonal and circular cells were generated for five different relative densities (0.077, 0.105, 0.133, 0.182 and 0.333). A study of the influence of geometrical parameters on fracture toughness was also conducted. Based on the finite-element simulations, three linear correlations are proposed which could be useful for estimation of fracture toughness values if relative densities are in the considered range of 0.077 (90 kg/m 3 density) and 0.333 (390 kg/m 3 density). Finally, the authors validate their proposed micromechanical models presenting a comparison of analytical, numerical and experimental results of fracture toughness of cellular materials. It was found that at low relative densities (between 0.077 and 0.333), the proposed micromechanical models predict the fracture toughness values similar to experimental and numerical ones, but they must be used according with the real cellular structure.
ISSN:1029-9599
1990-5424
DOI:10.1134/S1029959918020121