Loading…

A note on the eternal dominating set problem

We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a n...

Full description

Saved in:
Bibliographic Details
Published in:International journal of game theory 2018-05, Vol.47 (2), p.543-555
Main Authors: Finbow, Stephen, Gaspers, Serge, Messinger, Margaret-Ellen, Ottaway, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a neighboring vertex) to form a dominating set that includes the attacked vertex. The minimum number of guards required to defend against any sequence of attacks is the “eternal domination number” of the graph. In 2005, it was conjectured [Goddard et al. (J. Combin. Math. Combin. Comput. 52:169–180, 2005)] there would be no advantage to allow multiple guards to occupy the same vertex during a round. We show this is, in fact, false. We also describe algorithms to determine the eternal domination number for both models for eternal domination and examine the related combinatorial game, which makes use of the reduced canonical form of games.
ISSN:0020-7276
1432-1270
DOI:10.1007/s00182-018-0623-0