Loading…
A note on the eternal dominating set problem
We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a n...
Saved in:
Published in: | International journal of game theory 2018-05, Vol.47 (2), p.543-555 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73 |
container_end_page | 555 |
container_issue | 2 |
container_start_page | 543 |
container_title | International journal of game theory |
container_volume | 47 |
creator | Finbow, Stephen Gaspers, Serge Messinger, Margaret-Ellen Ottaway, Paul |
description | We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a neighboring vertex) to form a dominating set that includes the attacked vertex. The minimum number of guards required to defend against any sequence of attacks is the “eternal domination number” of the graph. In 2005, it was conjectured [Goddard et al. (J. Combin. Math. Combin. Comput. 52:169–180, 2005)] there would be no advantage to allow multiple guards to occupy the same vertex during a round. We show this is, in fact, false. We also describe algorithms to determine the eternal domination number for both models for eternal domination and examine the related combinatorial game, which makes use of the reduced canonical form of games. |
doi_str_mv | 10.1007/s00182-018-0623-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2035475454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035475454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqHwANwsccWwXsd2cqwqKEiVuMDZys-mpGqTYrsH3h5HQeLEZfYy38xqGLuV8CAB7GMAkAWKJAIMKgFnLJO5QiHRwjnLABCERWsu2VUIO0gMFJix-yUfxkh8HHj8JE6R_FDteTse-qGK_bDlgSI_-rHe0-GaXXTVPtDN712wj-en99WL2LytX1fLjWhUIaPIO7Qa8gJsV5kSsahVaQogVZsytRqpsdVUt1aZskUJum0abWqryDbKVlYt2N2cm3q_ThSi242n6a_gEJTOrc51nlxydjV-DMFT546-P1T-20lw0yhuHsUlcdMoDhKDMxOSd9iS_0v-H_oBe8dhMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035475454</pqid></control><display><type>article</type><title>A note on the eternal dominating set problem</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Finbow, Stephen ; Gaspers, Serge ; Messinger, Margaret-Ellen ; Ottaway, Paul</creator><creatorcontrib>Finbow, Stephen ; Gaspers, Serge ; Messinger, Margaret-Ellen ; Ottaway, Paul</creatorcontrib><description>We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a neighboring vertex) to form a dominating set that includes the attacked vertex. The minimum number of guards required to defend against any sequence of attacks is the “eternal domination number” of the graph. In 2005, it was conjectured [Goddard et al. (J. Combin. Math. Combin. Comput. 52:169–180, 2005)] there would be no advantage to allow multiple guards to occupy the same vertex during a round. We show this is, in fact, false. We also describe algorithms to determine the eternal domination number for both models for eternal domination and examine the related combinatorial game, which makes use of the reduced canonical form of games.</description><identifier>ISSN: 0020-7276</identifier><identifier>EISSN: 1432-1270</identifier><identifier>DOI: 10.1007/s00182-018-0623-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Behavioral/Experimental Economics ; Cameras ; Combinatorial analysis ; Dominance ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Game Theory ; Games ; Guards ; Operations Research/Decision Theory ; Original Paper ; Social and Behav. Sciences</subject><ispartof>International journal of game theory, 2018-05, Vol.47 (2), p.543-555</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>International Journal of Game Theory is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73</citedby><cites>FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2035475454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2035475454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,12827,27903,27904,33202,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Finbow, Stephen</creatorcontrib><creatorcontrib>Gaspers, Serge</creatorcontrib><creatorcontrib>Messinger, Margaret-Ellen</creatorcontrib><creatorcontrib>Ottaway, Paul</creatorcontrib><title>A note on the eternal dominating set problem</title><title>International journal of game theory</title><addtitle>Int J Game Theory</addtitle><description>We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a neighboring vertex) to form a dominating set that includes the attacked vertex. The minimum number of guards required to defend against any sequence of attacks is the “eternal domination number” of the graph. In 2005, it was conjectured [Goddard et al. (J. Combin. Math. Combin. Comput. 52:169–180, 2005)] there would be no advantage to allow multiple guards to occupy the same vertex during a round. We show this is, in fact, false. We also describe algorithms to determine the eternal domination number for both models for eternal domination and examine the related combinatorial game, which makes use of the reduced canonical form of games.</description><subject>Algorithms</subject><subject>Behavioral/Experimental Economics</subject><subject>Cameras</subject><subject>Combinatorial analysis</subject><subject>Dominance</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Game Theory</subject><subject>Games</subject><subject>Guards</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Social and Behav. Sciences</subject><issn>0020-7276</issn><issn>1432-1270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp1kM1OwzAQhC0EEqHwANwsccWwXsd2cqwqKEiVuMDZys-mpGqTYrsH3h5HQeLEZfYy38xqGLuV8CAB7GMAkAWKJAIMKgFnLJO5QiHRwjnLABCERWsu2VUIO0gMFJix-yUfxkh8HHj8JE6R_FDteTse-qGK_bDlgSI_-rHe0-GaXXTVPtDN712wj-en99WL2LytX1fLjWhUIaPIO7Qa8gJsV5kSsahVaQogVZsytRqpsdVUt1aZskUJum0abWqryDbKVlYt2N2cm3q_ThSi242n6a_gEJTOrc51nlxydjV-DMFT546-P1T-20lw0yhuHsUlcdMoDhKDMxOSd9iS_0v-H_oBe8dhMQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Finbow, Stephen</creator><creator>Gaspers, Serge</creator><creator>Messinger, Margaret-Ellen</creator><creator>Ottaway, Paul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>A note on the eternal dominating set problem</title><author>Finbow, Stephen ; Gaspers, Serge ; Messinger, Margaret-Ellen ; Ottaway, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Behavioral/Experimental Economics</topic><topic>Cameras</topic><topic>Combinatorial analysis</topic><topic>Dominance</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Game Theory</topic><topic>Games</topic><topic>Guards</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Social and Behav. Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finbow, Stephen</creatorcontrib><creatorcontrib>Gaspers, Serge</creatorcontrib><creatorcontrib>Messinger, Margaret-Ellen</creatorcontrib><creatorcontrib>Ottaway, Paul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of game theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finbow, Stephen</au><au>Gaspers, Serge</au><au>Messinger, Margaret-Ellen</au><au>Ottaway, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the eternal dominating set problem</atitle><jtitle>International journal of game theory</jtitle><stitle>Int J Game Theory</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>47</volume><issue>2</issue><spage>543</spage><epage>555</epage><pages>543-555</pages><issn>0020-7276</issn><eissn>1432-1270</eissn><abstract>We consider the “all guards move” model for the eternal dominating set problem. A set of guards form a dominating set on a graph and at the beginning of each round, a vertex not in the dominating set is attacked. To defend against the attack, the guards move (each guard either passes or moves to a neighboring vertex) to form a dominating set that includes the attacked vertex. The minimum number of guards required to defend against any sequence of attacks is the “eternal domination number” of the graph. In 2005, it was conjectured [Goddard et al. (J. Combin. Math. Combin. Comput. 52:169–180, 2005)] there would be no advantage to allow multiple guards to occupy the same vertex during a round. We show this is, in fact, false. We also describe algorithms to determine the eternal domination number for both models for eternal domination and examine the related combinatorial game, which makes use of the reduced canonical form of games.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00182-018-0623-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7276 |
ispartof | International journal of game theory, 2018-05, Vol.47 (2), p.543-555 |
issn | 0020-7276 1432-1270 |
language | eng |
recordid | cdi_proquest_journals_2035475454 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; ABI/INFORM Global; Springer Link |
subjects | Algorithms Behavioral/Experimental Economics Cameras Combinatorial analysis Dominance Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Game Theory Games Guards Operations Research/Decision Theory Original Paper Social and Behav. Sciences |
title | A note on the eternal dominating set problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20eternal%20dominating%20set%20problem&rft.jtitle=International%20journal%20of%20game%20theory&rft.au=Finbow,%20Stephen&rft.date=2018-05-01&rft.volume=47&rft.issue=2&rft.spage=543&rft.epage=555&rft.pages=543-555&rft.issn=0020-7276&rft.eissn=1432-1270&rft_id=info:doi/10.1007/s00182-018-0623-0&rft_dat=%3Cproquest_cross%3E2035475454%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-4f27504807fa69228b39680e3b697086152d5ebd7369d2105dcc56b73e7c37a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035475454&rft_id=info:pmid/&rfr_iscdi=true |