Loading…

One-Dimensional Linear Kinematic Wave Solution for Overland Flow under Moving Storms Using the Method of Characteristics

AbstractThe kinematic wave theory has been a widely accepted technique for modeling overland flow. Although it is recognized that overland flow is nonlinear, linear approximations have nonetheless been applied and found to be satisfactory on small impermeable areas such as those found in the urban e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrologic engineering 2018-07, Vol.23 (7)
Main Authors: Singh, Vijay P, de Lima, João L. M. P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AbstractThe kinematic wave theory has been a widely accepted technique for modeling overland flow. Although it is recognized that overland flow is nonlinear, linear approximations have nonetheless been applied and found to be satisfactory on small impermeable areas such as those found in the urban environment as well as on steep slopes. Linear approximation also holds for floods, which may explain the popularity of the unit hydrograph method. This study derives analytical solutions of one-dimensional (1D) kinematic wave equations for overland flow on a plane subjected to moving storms using the method of characteristics. Two cases of storm movement are considered: a storm moving downstream and a storm moving upstream. The 1D solutions are compared with other analytical solutions and with the laboratory simulation. The proposed analytical solution, despite the simplifications embedded therein, suggests that it can be useful for engineering purposes. It clearly shows the flow characteristics during the rising limb, at equilibrium (constant discharge achieved), and during the recession limb of the hydrograph. Also, it can be used to quantify the error resulting from the assumption of a stationary storm covering the entire watershed, which seldom happens.
ISSN:1084-0699
1943-5584
DOI:10.1061/(ASCE)HE.1943-5584.0001676