Loading…
Numerical simulation and analysis of condensation shocks in cavitating flow
We analyse unsteady cavity dynamics, cavitation patterns and instability mechanisms governing partial cavitation in the flow past a sharp convergent–divergent wedge. Reproducing a recent reference experiment by numerical simulation, the investigated flow regime is characterised by large-scale cloud...
Saved in:
Published in: | Journal of fluid mechanics 2018-03, Vol.838, p.759-813 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyse unsteady cavity dynamics, cavitation patterns and instability mechanisms governing partial cavitation in the flow past a sharp convergent–divergent wedge. Reproducing a recent reference experiment by numerical simulation, the investigated flow regime is characterised by large-scale cloud cavitation. In agreement with the experiments, we find that cloud shedding is dominated by the periodic occurrence of condensation shocks, propagating through the two-phase medium. The physical model is based on the homogeneous mixture approach, the assumption of thermodynamic equilibrium, and a closed-form barotropic equation of state. Compressibility of water and water vapour is taken into account. We deliberately suppress effects of molecular viscosity, in order to demonstrate that inertial effects dominate the flow evolution. We qualify the flow predictions, and validate the numerical approach by comparison with experiments. In agreement with the experiments, the vapour volume fraction within the partial cavity reaches values
${>}80\,\%$
for its spanwise average. Very good agreement is further obtained for the shedding Strouhal number, the cavity growth and collapse velocities, and for typical coherent flow structures. In accordance with the experiments, the simulations reproduce a condensation shock forming at the trailing part of the partial cavity. It is demonstrated that it satisfies locally Rankine–Hugoniot jump relations. Estimation of the shock propagation Mach number shows that the flow is supersonic. With a magnitude of only a few kPa, the pressure rise across the shock is much lower than for typical cavity collapse events. It is thus far too weak to cause cavitation erosion directly. However, by affecting the dynamics of the cavity, the flow aggressiveness can be significantly altered. Our results indicate that, in addition to classically observed re-entrant jets, condensation shocks feed an intrinsic instability mechanism of partial cavitation. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2017.882 |