Loading…
A global optimization method for nonconvex separable programming problems
Conventional methods of solving nonconvex separable programming (NSP) problems by mixed integer programming methods requires adding numerous 0–1 variables. In this work, we present a new method of deriving the global optimum of a NSP program using less number of 0–1 variables. A separable function i...
Saved in:
Published in: | European journal of operational research 1999-09, Vol.117 (2), p.275-292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional methods of solving nonconvex separable programming (NSP) problems by mixed integer programming methods requires adding numerous 0–1 variables. In this work, we present a new method of deriving the global optimum of a NSP program using less number of 0–1 variables. A separable function is initially expressed by a piecewise linear function with summation of absolute terms. Linearizing these absolute terms allows us to convert a NSP problem into a linearly mixed 0–1 program solvable for reaching a solution which is extremely close to the global optimum. |
---|---|
ISSN: | 0377-2217 1872-6860 |
DOI: | 10.1016/S0377-2217(98)00243-4 |