Loading…
A robust approach based on conditional value-at-risk measure to statistical learning problems
In statistical learning problems, measurement errors in the observed data degrade the reliability of estimation. There exist several approaches to handle those uncertainties in observations. In this paper, we propose to use the conditional value-at-risk (CVaR) measure in order to depress influence o...
Saved in:
Published in: | European journal of operational research 2009-10, Vol.198 (1), p.287-296 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In statistical learning problems, measurement errors in the observed data degrade the reliability of estimation. There exist several approaches to handle those uncertainties in observations. In this paper, we propose to use the conditional value-at-risk (CVaR) measure in order to depress influence of measurement errors, and investigate the relation between the resulting CVaR minimization problems and some existing approaches in the same framework. For the CVaR minimization problems which include the computation of integration, we apply Monte Carlo sampling method and obtain their approximate solutions. The approximation error bound and convergence property of the solution are proved by Vapnik and Chervonenkis theory. Numerical experiments show that the CVaR minimization problem can achieve fairly good estimation results, compared with several support vector machines, in the presence of measurement errors. |
---|---|
ISSN: | 0377-2217 1872-6860 |
DOI: | 10.1016/j.ejor.2008.07.027 |