Loading…
Introduction to the LASSO
The term ‘high-dimensional’ refers to the case where the number of unknown parameters to be estimated, p, is of much larger order than the number of observations, n, that is p ≫ n. Since traditional statistical methods assume many observations and a few unknown variables, they can not cope up with t...
Saved in:
Published in: | Resonance 2018-01, Vol.23 (4), p.439-464 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The term ‘high-dimensional’ refers to the case where the number of unknown parameters to be estimated, p, is of much larger order than the number of observations, n, that is p ≫ n. Since traditional statistical methods assume many observations and a few unknown variables, they can not cope up with the situations when p ≫ n. In this article, we study a statistical method, called the ‘Least Absolute Shrinkage and Selection Operator’ (LASSO), that has got much attention in solving high-dimensional problems. In particular, we consider the LASSO for high-dimensional linear regression models. We aim to provide an introduction of the LASSO method as a constrained quadratic programming problem, and we discuss the convex optimization based approach to solve the LASSO problem. We also illustrate applications of LASSO method using a simulated and a real data examples. |
---|---|
ISSN: | 0971-8044 0973-712X |
DOI: | 10.1007/s12045-018-0635-x |