Loading…
The Local Theory for Regular Systems in the Context of t-Bonded Sets
The main goal of the local theory for crystals developed in the last quarter of the 20th Century by a geometry group of Delone (Delaunay) at the Steklov Mathematical Institute is to find and prove the correct statements rigorously explaining why the crystalline structure follows from the pair-wise i...
Saved in:
Published in: | Symmetry (Basel) 2018-05, Vol.10 (5), p.159 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main goal of the local theory for crystals developed in the last quarter of the 20th Century by a geometry group of Delone (Delaunay) at the Steklov Mathematical Institute is to find and prove the correct statements rigorously explaining why the crystalline structure follows from the pair-wise identity of local arrangements around each atom. Originally, the local theory for regular and multiregular systems was developed with the assumption that all point sets under consideration are ( r , R ) -systems or, in other words, Delone sets of type ( r , R ) in d-dimensional Euclidean space. In this paper, we will review the recent results of the local theory for a wider class of point sets compared with the Delone sets. We call them t-bonded sets. This theory, in particular, might provide new insight into the case for which the atomic structure of matter is a Delone set of a “microporous” character, i.e., a set that contains relatively large cavities free from points of the set. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym10050159 |