Loading…

High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity

The synthesis of poly(ionic liquid)s (PILs), a new class of polymers with numerous possible applications and tailored thermorheological properties, is quite a challenging task. To achieve that goal, different strategies have been proposed and developed. However, in the majority of cases macromolecul...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2018-03, Vol.140, p.158-166
Main Authors: Maksym, Paulina, Tarnacka, Magdalena, Dzienia, Andrzej, Erfurt, Karol, Brzęczek-Szafran, Alina, Chrobok, Anna, Zięba, Andrzej, Kaminski, Kamil, Paluch, Marian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The synthesis of poly(ionic liquid)s (PILs), a new class of polymers with numerous possible applications and tailored thermorheological properties, is quite a challenging task. To achieve that goal, different strategies have been proposed and developed. However, in the majority of cases macromolecules with relatively low molecular weights and high dispersities were produced, probably due to the strong intermolecular coulombic interactions that determine the behavior of monomeric ionic liquids. In this paper, we proposed a completely new approach that relies on the pressure-induced reversible addition fragmentation chain transfer polymerization (RAFT) to produce PILs of desired properties. For this purpose, a series of model imidazolium-based ionic monomers, with different lengths of aliphatic side chains as additional steric hindrances, have been successfully polymerized under high pressure (p = 250, 500 and 800 MPa). In contrast to results obtained at ambient pressure, all monomers yielded high molecular weight polymers (degrees of polymerization DPn ≤ 10 000) with narrow dispersities (Ð∼1.10). From the kinetic data obtained at various thermodynamic conditions, the rate of polymerization, Rp, and overall activation volumes, ΔV, were estimated, which in the limit of low pressures varied as follows −16.7, −18.1, −32.6 and −35.6 cm mol−1 for [MVIM][NTf2], [EVIM][NTf2], [BVIM][NTf2] and [OVIM][NTf2], respectively. An unexpected significant jump in ΔV can be correlated with the nanostructure organization that, accordingly to the literature, starts to dominate in the latter two monomers. It was also demonstrated that below p = 500 MPa, the termination reaction is almost completely suppressed, independently on the sample. On the other hand, above that pressure both the polymerization rate and the control over the reaction decreased due to the high viscosity preventing diffusion of the monomers. Moreover, taking advantage of the high pressure polymerization, we had a unique opportunity of exploring and better understanding a correlation among molecular weight, Mn, the glass transition temperature, Tg, and the dc conductivity, σdc, for a very wide range of Mn (up to 430 kg/mol) polymers of various backbone rigidity. We observed that the evolution of Tg with Mn follows a typical Fox-Flory relation. Nevertheless, Tg decreases with an increase in the size of the monomer. Additionally, a similar chemical structure dependence was observed for the dc conductivity, which
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2018.02.030