Loading…

Spatial Adaptation of Populations in Ecological Models

A discrete dynamic model of populations is described; in this model, spatial migration is specified by a finite-state Markov chain, while growth and nonlinear interactions are defined by convex and concave functions. This makes it possible to efficiently analyze the dynamic process and the behavior...

Full description

Saved in:
Bibliographic Details
Published in:Biophysics (Oxford) 2018-03, Vol.63 (2), p.274-281
Main Authors: Il’ichev, V. G., Il’icheva, O. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A discrete dynamic model of populations is described; in this model, spatial migration is specified by a finite-state Markov chain, while growth and nonlinear interactions are defined by convex and concave functions. This makes it possible to efficiently analyze the dynamic process and the behavior of a system based on the theory of monotone operators. The adaptation mechanisms that underlie the evolution of a population migration matrix are studied. It turned out that the final state depends on the choice of the initial state, although the positive eigenvectors (Perron vectors) of all these matrices are almost identical. The components of a Perron vector here correspond to the relative residence time of a population in a certain location. Spatial adaptation indicates the optimization of the residence time of a population in certain regions of its distribution range. The corresponding computations allowed a new interpretation of the phenomenon of spatial coadaptation as an “attraction” (in the case of predation) or a “repulsion” (in the case of competition) of the Perron vectors of populations.
ISSN:0006-3509
1555-6654
DOI:10.1134/S0006350918020112