Loading…

Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance

Healthcare fraud and abuse are a serious challenge to healthcare payers and to the entire society. This article presents a predictive model for fraud and abuse detection in health insurance based on a training dataset of manually reviewed claims. The goal of the analysis is to predict different frau...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2016-11, Vol.71, p.244-252
Main Authors: Bayerstadler, Andreas, van Dijk, Linda, Winter, Fabian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Healthcare fraud and abuse are a serious challenge to healthcare payers and to the entire society. This article presents a predictive model for fraud and abuse detection in health insurance based on a training dataset of manually reviewed claims. The goal of the analysis is to predict different fraud and abuse probabilities for new invoices. The prediction is based on a wide framework of fraud and abuse reports which examine the behavior of medical providers and insured members by measuring systematic deviation from usual patterns in medical claims data. We show that models which directly use the results of the reports as model covariates do not exploit the full potential in terms of predictive quality. Instead, we propose a multinomial Bayesian latent variable model which summarizes behavioral patterns in latent variables, and predicts different fraud and abuse probabilities. The estimation of model parameters is based on a Markov Chain Monte Carlo (MCMC) algorithm using Bayesian shrinkage techniques. The presented approach improves the identification of fraudulent and abusive claims compared to different benchmark approaches.
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2016.09.013