Loading…

The Piecewise Cubic Method (PCM) for computational fluid dynamics

We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2017-07, Vol.341, p.230-257
Main Authors: Lee, Dongwook, Faller, Hugues, Reyes, Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge–Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2017.04.004