Loading…
The Piecewise Cubic Method (PCM) for computational fluid dynamics
We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy b...
Saved in:
Published in: | Journal of computational physics 2017-07, Vol.341, p.230-257 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3 |
container_end_page | 257 |
container_issue | |
container_start_page | 230 |
container_title | Journal of computational physics |
container_volume | 341 |
creator | Lee, Dongwook Faller, Hugues Reyes, Adam |
description | We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge–Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions. |
doi_str_mv | 10.1016/j.jcp.2017.04.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061955283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117302759</els_id><sourcerecordid>2061955283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwA9gsscCQcO04LzFVES-pFR3KbLn2teqorYOdgPrvSVVmprt85-roEHLLIGXAisc2bXWXcmBlCiIFEGdkwqCGhJesOCcTAM6Suq7ZJbmKsQWAKhfVhMxWG6RLhxp_XETaDGun6QL7jTf0ftksHqj1gWq_64Ze9c7v1Zba7eAMNYe92jkdr8mFVduIN393Sj5fnlfNWzL_eH1vZvNEi0z0idAMcguVMIpzyHNh-ChhELKs0GsrRFkpplStkKERZYlGsSw3RthybQ3YbEruTn-74L8GjL1s_RBGnyg5FKzOc15l44qdVjr4GANa2QW3U-EgGchjKdnKsZQ8lpIg5FhqZJ5ODI763w6DjNrhXqNxAXUvjXf_0L8fvm-Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061955283</pqid></control><display><type>article</type><title>The Piecewise Cubic Method (PCM) for computational fluid dynamics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lee, Dongwook ; Faller, Hugues ; Reyes, Adam</creator><creatorcontrib>Lee, Dongwook ; Faller, Hugues ; Reyes, Adam</creatorcontrib><description>We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge–Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.04.004</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational fluid dynamics ; Computational physics ; Conservation laws ; Eulers equations ; Finite volume method ; Fluid dynamics ; Gas dynamics ; Gas flow ; Godunov's method ; High-order methods ; Magnetohydrodynamics ; Piecewise cubic method ; Polynomials ; Runge-Kutta method</subject><ispartof>Journal of computational physics, 2017-07, Vol.341, p.230-257</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3</citedby><cites>FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3</cites><orcidid>0000-0002-2386-1028 ; 0000-0003-1859-9229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Dongwook</creatorcontrib><creatorcontrib>Faller, Hugues</creatorcontrib><creatorcontrib>Reyes, Adam</creatorcontrib><title>The Piecewise Cubic Method (PCM) for computational fluid dynamics</title><title>Journal of computational physics</title><description>We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge–Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.</description><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Conservation laws</subject><subject>Eulers equations</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Gas dynamics</subject><subject>Gas flow</subject><subject>Godunov's method</subject><subject>High-order methods</subject><subject>Magnetohydrodynamics</subject><subject>Piecewise cubic method</subject><subject>Polynomials</subject><subject>Runge-Kutta method</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEqXwA9gsscCQcO04LzFVES-pFR3KbLn2teqorYOdgPrvSVVmprt85-roEHLLIGXAisc2bXWXcmBlCiIFEGdkwqCGhJesOCcTAM6Suq7ZJbmKsQWAKhfVhMxWG6RLhxp_XETaDGun6QL7jTf0ftksHqj1gWq_64Ze9c7v1Zba7eAMNYe92jkdr8mFVduIN393Sj5fnlfNWzL_eH1vZvNEi0z0idAMcguVMIpzyHNh-ChhELKs0GsrRFkpplStkKERZYlGsSw3RthybQ3YbEruTn-74L8GjL1s_RBGnyg5FKzOc15l44qdVjr4GANa2QW3U-EgGchjKdnKsZQ8lpIg5FhqZJ5ODI763w6DjNrhXqNxAXUvjXf_0L8fvm-Z</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Lee, Dongwook</creator><creator>Faller, Hugues</creator><creator>Reyes, Adam</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2386-1028</orcidid><orcidid>https://orcid.org/0000-0003-1859-9229</orcidid></search><sort><creationdate>20170715</creationdate><title>The Piecewise Cubic Method (PCM) for computational fluid dynamics</title><author>Lee, Dongwook ; Faller, Hugues ; Reyes, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Conservation laws</topic><topic>Eulers equations</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Gas dynamics</topic><topic>Gas flow</topic><topic>Godunov's method</topic><topic>High-order methods</topic><topic>Magnetohydrodynamics</topic><topic>Piecewise cubic method</topic><topic>Polynomials</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Dongwook</creatorcontrib><creatorcontrib>Faller, Hugues</creatorcontrib><creatorcontrib>Reyes, Adam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Dongwook</au><au>Faller, Hugues</au><au>Reyes, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Piecewise Cubic Method (PCM) for computational fluid dynamics</atitle><jtitle>Journal of computational physics</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>341</volume><spage>230</spage><epage>257</epage><pages>230-257</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge–Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.04.004</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-2386-1028</orcidid><orcidid>https://orcid.org/0000-0003-1859-9229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-07, Vol.341, p.230-257 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2061955283 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computational fluid dynamics Computational physics Conservation laws Eulers equations Finite volume method Fluid dynamics Gas dynamics Gas flow Godunov's method High-order methods Magnetohydrodynamics Piecewise cubic method Polynomials Runge-Kutta method |
title | The Piecewise Cubic Method (PCM) for computational fluid dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Piecewise%20Cubic%20Method%20(PCM)%20for%20computational%20fluid%20dynamics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lee,%20Dongwook&rft.date=2017-07-15&rft.volume=341&rft.spage=230&rft.epage=257&rft.pages=230-257&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.04.004&rft_dat=%3Cproquest_cross%3E2061955283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-4c105f084da220554d2000de0336cbf4478a1aa9ae1ed477eda135dd4f7bfd0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2061955283&rft_id=info:pmid/&rfr_iscdi=true |