Loading…
Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities
The coupled chemotaxis fluid system n t = Δ n - ∇ · ( n S ( x , n , c ) · ∇ c ) - u · ∇ n , ( x , t ) ∈ Ω × ( 0 , T ) , c t = Δ c - n c - u · ∇ c , ( x , t ) ∈ Ω × ( 0 , T ) , u t = Δ u - ( u · ∇ ) u + ∇ P + n ∇ Φ , ∇ · u = 0 , ( x , t ) ∈ Ω × ( 0 , T ) , ∇ c · ν = ( ∇ n - n S ( x , n , c ) · ∇ c )...
Saved in:
Published in: | Calculus of variations and partial differential equations 2016-08, Vol.55 (4), p.1-39, Article 107 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coupled chemotaxis fluid system
n
t
=
Δ
n
-
∇
·
(
n
S
(
x
,
n
,
c
)
·
∇
c
)
-
u
·
∇
n
,
(
x
,
t
)
∈
Ω
×
(
0
,
T
)
,
c
t
=
Δ
c
-
n
c
-
u
·
∇
c
,
(
x
,
t
)
∈
Ω
×
(
0
,
T
)
,
u
t
=
Δ
u
-
(
u
·
∇
)
u
+
∇
P
+
n
∇
Φ
,
∇
·
u
=
0
,
(
x
,
t
)
∈
Ω
×
(
0
,
T
)
,
∇
c
·
ν
=
(
∇
n
-
n
S
(
x
,
n
,
c
)
·
∇
c
)
·
ν
=
0
,
u
=
0
,
(
x
,
t
)
∈
∂
Ω
×
(
0
,
T
)
,
n
(
x
,
0
)
=
n
0
(
x
)
,
c
(
x
,
0
)
=
c
0
(
x
)
,
u
(
x
,
0
)
=
u
0
(
x
)
,
x
∈
Ω
,
where
S
∈
(
C
2
(
Ω
¯
×
[
0
,
∞
)
2
)
)
N
×
N
, is considered in a bounded domain
Ω
⊂
R
N
,
N
∈
{
2
,
3
}
, with smooth boundary. We show that it has global classical solutions if the initial data satisfy certain smallness conditions and give decay properties of these solutions. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-016-1027-2 |