Loading…
A new look at the crossed-product of a C-algebra by an endomorphism
We give a new definition for the crossed-product of a C*-algebra A by a *-endomorphism $\alpha$, which depends not only on the pair $(A,\alpha)$ but also on the choice of a transfer operator. With this we generalize some of the earlier constructions in the situations in which they behave best (e.g....
Saved in:
Published in: | Ergodic theory and dynamical systems 2003-12, Vol.23 (6), p.1733-1750, Article S0143385702001797 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a new definition for the crossed-product of a C*-algebra A by a *-endomorphism $\alpha$, which depends not only on the pair $(A,\alpha)$ but also on the choice of a transfer operator. With this we generalize some of the earlier constructions in the situations in which they behave best (e.g. for monomorphisms with hereditary range), but we get a different and perhaps more natural outcome in other situations. For example, we show that the Cuntz–Krieger algebra $\mathcal{O}_{\mathcal A}$ arises as the result of our construction when applied to the corresponding Markov subshift and a very natural transfer operator. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385702001797 |