Loading…
Tiling spaces are Cantor set fiber bundles
We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to...
Saved in:
Published in: | Ergodic theory and dynamical systems 2003-02, Vol.23 (1), p.307-316 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a \mathbb{Z}^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that (1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-edge to full-edge (or full-face to full-face), (2) only a finite number of tile types are allowed, and (3) each tile type appears in only a finite number of orientations. The proof is constructive and we illustrate it by constructing a ‘square’ version of the Penrose tiling system. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385702000949 |