Loading…
Tiling spaces are Cantor set fiber bundles
We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to...
Saved in:
Published in: | Ergodic theory and dynamical systems 2003-02, Vol.23 (1), p.307-316 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-984750c0643d359175bf5c7dabae8a1668da57e7a359c17552dbe777df9dfe893 |
---|---|
cites | |
container_end_page | 316 |
container_issue | 1 |
container_start_page | 307 |
container_title | Ergodic theory and dynamical systems |
container_volume | 23 |
creator | SADUN, LORENZO WILLIAMS, R. F. |
description | We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a \mathbb{Z}^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that (1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-edge to full-edge (or full-face to full-face), (2) only a finite number of tile types are allowed, and (3) each tile type appears in only a finite number of orientations. The proof is constructive and we illustrate it by constructing a ‘square’ version of the Penrose tiling system. |
doi_str_mv | 10.1017/S0143385702000949 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206518938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385702000949</cupid><sourcerecordid>1398788571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-984750c0643d359175bf5c7dabae8a1668da57e7a359c17552dbe777df9dfe893</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfgUYjudj8me5SgVSiotNLelk12UlLbpO4moP_eLS16EE9zeJ533mEIuWT0hlEGt1PKBOeZBDqilGqhj8iACaVTIRgck8EOpzt-Ss5CWEWHM5ADcj2r13WzTMLWlhgS6zHJbdO1PgnYJVVdoE-KvnFrDOfkpLLrgBeHOSRvD_ez_DGdPI-f8rtJWnItu1RnAiQtqRLccaljS1HJEpwtLGaWKZU5KwHBRlhGKkeuQABwlXYVZpoPydV-79a3Hz2Gzqza3jex0oyokiwqWZTYXip9G4LHymx9vbH-yzBqdh8xfz4SM-k-U4cOP38C1r8bBRykUeNXs5gvZmL-MjV59Pmhw24KX7sl_l7yf8s3TpRv7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206518938</pqid></control><display><type>article</type><title>Tiling spaces are Cantor set fiber bundles</title><source>Cambridge Journals Online</source><creator>SADUN, LORENZO ; WILLIAMS, R. F.</creator><creatorcontrib>SADUN, LORENZO ; WILLIAMS, R. F.</creatorcontrib><description>We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a \mathbb{Z}^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that (1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-edge to full-edge (or full-face to full-face), (2) only a finite number of tile types are allowed, and (3) each tile type appears in only a finite number of orientations. The proof is constructive and we illustrate it by constructing a ‘square’ version of the Penrose tiling system.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385702000949</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2003-02, Vol.23 (1), p.307-316</ispartof><rights>2003 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-984750c0643d359175bf5c7dabae8a1668da57e7a359c17552dbe777df9dfe893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385702000949/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,72721</link.rule.ids></links><search><creatorcontrib>SADUN, LORENZO</creatorcontrib><creatorcontrib>WILLIAMS, R. F.</creatorcontrib><title>Tiling spaces are Cantor set fiber bundles</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a \mathbb{Z}^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that (1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-edge to full-edge (or full-face to full-face), (2) only a finite number of tile types are allowed, and (3) each tile type appears in only a finite number of orientations. The proof is constructive and we illustrate it by constructing a ‘square’ version of the Penrose tiling system.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfgUYjudj8me5SgVSiotNLelk12UlLbpO4moP_eLS16EE9zeJ533mEIuWT0hlEGt1PKBOeZBDqilGqhj8iACaVTIRgck8EOpzt-Ss5CWEWHM5ADcj2r13WzTMLWlhgS6zHJbdO1PgnYJVVdoE-KvnFrDOfkpLLrgBeHOSRvD_ez_DGdPI-f8rtJWnItu1RnAiQtqRLccaljS1HJEpwtLGaWKZU5KwHBRlhGKkeuQABwlXYVZpoPydV-79a3Hz2Gzqza3jex0oyokiwqWZTYXip9G4LHymx9vbH-yzBqdh8xfz4SM-k-U4cOP38C1r8bBRykUeNXs5gvZmL-MjV59Pmhw24KX7sl_l7yf8s3TpRv7w</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>SADUN, LORENZO</creator><creator>WILLIAMS, R. F.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200302</creationdate><title>Tiling spaces are Cantor set fiber bundles</title><author>SADUN, LORENZO ; WILLIAMS, R. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-984750c0643d359175bf5c7dabae8a1668da57e7a359c17552dbe777df9dfe893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SADUN, LORENZO</creatorcontrib><creatorcontrib>WILLIAMS, R. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SADUN, LORENZO</au><au>WILLIAMS, R. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiling spaces are Cantor set fiber bundles</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2003-02</date><risdate>2003</risdate><volume>23</volume><issue>1</issue><spage>307</spage><epage>316</epage><pages>307-316</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a \mathbb{Z}^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that (1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-edge to full-edge (or full-face to full-face), (2) only a finite number of tile types are allowed, and (3) each tile type appears in only a finite number of orientations. The proof is constructive and we illustrate it by constructing a ‘square’ version of the Penrose tiling system.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385702000949</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2003-02, Vol.23 (1), p.307-316 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_206518938 |
source | Cambridge Journals Online |
title | Tiling spaces are Cantor set fiber bundles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiling%20spaces%20are%20Cantor%20set%20fiber%20bundles&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=SADUN,%20LORENZO&rft.date=2003-02&rft.volume=23&rft.issue=1&rft.spage=307&rft.epage=316&rft.pages=307-316&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385702000949&rft_dat=%3Cproquest_cross%3E1398788571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-984750c0643d359175bf5c7dabae8a1668da57e7a359c17552dbe777df9dfe893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206518938&rft_id=info:pmid/&rft_cupid=10_1017_S0143385702000949&rfr_iscdi=true |