Loading…

Long-term capture orbits for low-energy space missions

This research aims at ascertaining the existence and characteristics of natural long-term capture orbits around a celestial body of potential interest. The problem is investigated in the dynamical framework of the three-dimensional circular restricted three-body problem. Previous numerical work on t...

Full description

Saved in:
Bibliographic Details
Published in:Celestial mechanics and dynamical astronomy 2018-07, Vol.130 (7), p.1-28, Article 46
Main Authors: Carletta, Stefano, Pontani, Mauro, Teofilatto, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research aims at ascertaining the existence and characteristics of natural long-term capture orbits around a celestial body of potential interest. The problem is investigated in the dynamical framework of the three-dimensional circular restricted three-body problem. Previous numerical work on two-dimensional trajectories provided numerical evidence of Conley’s theorem, proving that long-term capture orbits are topologically located near trajectories asymptotic to periodic libration point orbits. This work intends to extend the previous investigations to three-dimensional paths. In this dynamical context, several special trajectories exist, such as quasiperiodic orbits. These can be found as special solutions to the linear expansion of the dynamics equations and have already been proven to exist even using the nonlinear equations of motion. The nature of long-term capture orbits is thus investigated in relation to the dynamical conditions that correspond to asymptotic trajectories converging into quasiperiodic orbits. The analysis results in the definition of two parameters characterizing capture condition and the design of a capture strategy, guiding a spacecraft into long-term capture orbits around one of the primaries. Both the results are validated through numerical simulations of the three-dimensional nonlinear dynamics, including fourth-body perturbation, with special focus on the Jupiter–Ganymede system and the Earth–Moon system.
ISSN:0923-2958
1572-9478
DOI:10.1007/s10569-018-9843-7