Loading…
Hilfer–Katugampola fractional derivatives
We propose a new fractional derivative, the Hilfer–Katugampola fractional derivative. Motivated by the Hilfer derivative this formulation interpolates the well-known fractional derivatives of Hilfer, Hilfer–Hadamard, Riemann–Liouville, Hadamard, Caputo, Caputo–Hadamard, Liouville, Weyl, generalized...
Saved in:
Published in: | Computational & applied mathematics 2018-07, Vol.37 (3), p.3672-3690 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a new fractional derivative, the Hilfer–Katugampola fractional derivative. Motivated by the Hilfer derivative this formulation interpolates the well-known fractional derivatives of Hilfer, Hilfer–Hadamard, Riemann–Liouville, Hadamard, Caputo, Caputo–Hadamard, Liouville, Weyl, generalized and Caputo-type. As an application, we consider a nonlinear fractional differential equation with an initial condition using this new formulation. We show that this equation is equivalent to a Volterra integral equation and demonstrate the existence and uniqueness of solution to the nonlinear initial value problem. |
---|---|
ISSN: | 0101-8205 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-017-0536-8 |