Loading…

Hilfer–Katugampola fractional derivatives

We propose a new fractional derivative, the Hilfer–Katugampola fractional derivative. Motivated by the Hilfer derivative this formulation interpolates the well-known fractional derivatives of Hilfer, Hilfer–Hadamard, Riemann–Liouville, Hadamard, Caputo, Caputo–Hadamard, Liouville, Weyl, generalized...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2018-07, Vol.37 (3), p.3672-3690
Main Authors: Oliveira, D. S., de Oliveira, E. Capelas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a new fractional derivative, the Hilfer–Katugampola fractional derivative. Motivated by the Hilfer derivative this formulation interpolates the well-known fractional derivatives of Hilfer, Hilfer–Hadamard, Riemann–Liouville, Hadamard, Caputo, Caputo–Hadamard, Liouville, Weyl, generalized and Caputo-type. As an application, we consider a nonlinear fractional differential equation with an initial condition using this new formulation. We show that this equation is equivalent to a Volterra integral equation and demonstrate the existence and uniqueness of solution to the nonlinear initial value problem.
ISSN:0101-8205
2238-3603
1807-0302
DOI:10.1007/s40314-017-0536-8