Loading…

Structural evolution in a metallic glass pillar upon compression

The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13
Main Authors: Tong, X., Wang, G., Bednarčík, J., Jia, Y.D., Hussain, I., Yi, J., Stachurski, Z.H., Zhai, Q.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2018.02.050