Loading…

On the stochastic Cahn–Hilliard equation with a singular double-well potential

We prove well-posedness and regularity for the stochastic pure Cahn–Hilliard equation under homogeneous Neumann boundary conditions, with both additive and multiplicative Wiener noise. In contrast with great part of the literature, the double-well potential is treated as generally as possible, its c...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2018-06, Vol.171, p.102-133
Main Author: Scarpa, Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove well-posedness and regularity for the stochastic pure Cahn–Hilliard equation under homogeneous Neumann boundary conditions, with both additive and multiplicative Wiener noise. In contrast with great part of the literature, the double-well potential is treated as generally as possible, its convex part being associated to a multivalued maximal monotone graph everywhere defined on the real line on which no growth nor smoothness assumptions are assumed. The regularity result allows to give appropriate sense to the chemical potential and to write a natural variational formulation of the problem. The proofs are based on suitable monotonicity and compactness arguments in a generalized variational framework.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2018.01.016