Loading…
Using Network Theory and Machine Learning to predict El Niño
The skill of current predictions of the warm phase of the El Niño Southern Oscillation (ENSO) reduces significantly beyond a lag of six months. In this paper, we aim to increase this prediction skill at lags up to one year. The new method to do so combines a classical Autoregressive Integrated Movin...
Saved in:
Published in: | arXiv.org 2018-08 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The skill of current predictions of the warm phase of the El Niño Southern Oscillation (ENSO) reduces significantly beyond a lag of six months. In this paper, we aim to increase this prediction skill at lags up to one year. The new method to do so combines a classical Autoregressive Integrated Moving Average technique with a modern machine learning approach (through an Artificial Neural Network). The attributes in such a neural network are derived from topological properties of Climate Networks and are tested on both a Zebiak-Cane-type model and observations. For predictions up to six months ahead, the results of the hybrid model give a better skill than the CFSv2 ensemble prediction by the National Centers for Environmental Prediction (NCEP). Moreover, results for a twelve month lead time prediction have a similar skill as the shorter lead time predictions. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1803.10076 |