Loading…

Polypropylene in the intra-abdominal position: influence of pore size and surface area

Polypropylene is a material widely used in surgery. Because of its association with formation of enterocutaneous fistulae and adhesions, direct contact between mesh and intestine is avoided. The following study was designed to investigate the adhesive potential of different polypropylene meshes when...

Full description

Saved in:
Bibliographic Details
Published in:Hernia : the journal of hernias and abdominal wall surgery 2004-12, Vol.8 (4), p.365-372
Main Authors: Conze, J, Rosch, R, Klinge, U, Weiss, C, Anurov, M, Titkowa, S, Oettinger, A, Schumpelick, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polypropylene is a material widely used in surgery. Because of its association with formation of enterocutaneous fistulae and adhesions, direct contact between mesh and intestine is avoided. The following study was designed to investigate the adhesive potential of different polypropylene meshes when placed in direct contact with intestine. In an established experimental model, a total of 45 chinchilla rabbits underwent laparoscopic placement of meshes with different pore size (Group I: monofilament PP 0.6 mm, Group II: monofilament PP 2.5 mm, Group III: multifilament PP 4.0 mm) with the Intra-Peritoneal-Onlay-Mesh Technique (IPOM). The degree of adhesion formation was measured after 7, 21, and 90 days, evaluated by an adhesion score, quantified by computer-assisted planimetry, followed by histological and morphometric investigation of the perifilamental granuloma formation. The heavyweight, small porous polypropylene meshes (PP 0.6) showed significantly stronger adhesion formation at all intervals of investigation compared with the lightweight meshes with a pore size >2.5 mm. Between the two different lightweight mesh variations, there was no significant difference. Granuloma formation was lowest in large-pore-size monofilament meshes (PP 2.5). The IPOM rabbit model is suitable for investigation of biomaterials in the intra-abdominal position. Our results show that the adhesive potential is significantly influenced by the pore size. However, the extent of the foreign-body reaction seems also to be influenced by the filament structure, respectively, the surface area, favoring monofilament material.
ISSN:1265-4906
1248-9204
DOI:10.1007/s10029-004-0268-8