Loading…
Global martingale solutions for a stochastic population cross-diffusion system
The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and Jakubowski's generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia's truncation method due to Chekroun, Park, and Temam. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1806.01124 |