Loading…
Global martingale solutions for a stochastic population cross-diffusion system
The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dhariwal, Gaurav Jüngel, Ansgar Zamponi, Nicola |
description | The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and Jakubowski's generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia's truncation method due to Chekroun, Park, and Temam. |
doi_str_mv | 10.48550/arxiv.1806.01124 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073351519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073351519</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-a51e6069226c814350ad1ef1d6ac818e6bf2d0fb06244fd6e509653abf2008063</originalsourceid><addsrcrecordid>eNotT01Lw0AUXATBUvsDvC14Tnz79qPJUYpWoeil97JJdjVlm437NqL_3hR7mWFmYIZh7E5AqSqt4cGmn_67FBWYEoRAdcUWKKUoKoV4w1ZERwBAs0at5YK9bUNsbOAnm3I_fNjgOMUw5T4OxH1M3HLKsf20lPuWj3Gcgj2HvE2RqOh67yc6a_ql7E637NrbQG514SXbPz_tNy_F7n37unncFVZjPYNwBkyNaNpKKKnBdsJ50Rk768qZxmMHvgGDSvnOOA210dLONsB8TC7Z_X_tmOLX5CgfjnFKw7x4QFhLqYUWtfwD-LVQeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073351519</pqid></control><display><type>article</type><title>Global martingale solutions for a stochastic population cross-diffusion system</title><source>Publicly Available Content Database</source><creator>Dhariwal, Gaurav ; Jüngel, Ansgar ; Zamponi, Nicola</creator><creatorcontrib>Dhariwal, Gaurav ; Jüngel, Ansgar ; Zamponi, Nicola</creatorcontrib><description>The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and Jakubowski's generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia's truncation method due to Chekroun, Park, and Temam.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1806.01124</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusion ; Galerkin method ; Hilbert space ; Martingales ; Matrix methods ; Tightness</subject><ispartof>arXiv.org, 2018-06</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2073351519?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dhariwal, Gaurav</creatorcontrib><creatorcontrib>Jüngel, Ansgar</creatorcontrib><creatorcontrib>Zamponi, Nicola</creatorcontrib><title>Global martingale solutions for a stochastic population cross-diffusion system</title><title>arXiv.org</title><description>The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and Jakubowski's generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia's truncation method due to Chekroun, Park, and Temam.</description><subject>Diffusion</subject><subject>Galerkin method</subject><subject>Hilbert space</subject><subject>Martingales</subject><subject>Matrix methods</subject><subject>Tightness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT01Lw0AUXATBUvsDvC14Tnz79qPJUYpWoeil97JJdjVlm437NqL_3hR7mWFmYIZh7E5AqSqt4cGmn_67FBWYEoRAdcUWKKUoKoV4w1ZERwBAs0at5YK9bUNsbOAnm3I_fNjgOMUw5T4OxH1M3HLKsf20lPuWj3Gcgj2HvE2RqOh67yc6a_ql7E637NrbQG514SXbPz_tNy_F7n37unncFVZjPYNwBkyNaNpKKKnBdsJ50Rk768qZxmMHvgGDSvnOOA210dLONsB8TC7Z_X_tmOLX5CgfjnFKw7x4QFhLqYUWtfwD-LVQeA</recordid><startdate>20180604</startdate><enddate>20180604</enddate><creator>Dhariwal, Gaurav</creator><creator>Jüngel, Ansgar</creator><creator>Zamponi, Nicola</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180604</creationdate><title>Global martingale solutions for a stochastic population cross-diffusion system</title><author>Dhariwal, Gaurav ; Jüngel, Ansgar ; Zamponi, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-a51e6069226c814350ad1ef1d6ac818e6bf2d0fb06244fd6e509653abf2008063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Diffusion</topic><topic>Galerkin method</topic><topic>Hilbert space</topic><topic>Martingales</topic><topic>Matrix methods</topic><topic>Tightness</topic><toplevel>online_resources</toplevel><creatorcontrib>Dhariwal, Gaurav</creatorcontrib><creatorcontrib>Jüngel, Ansgar</creatorcontrib><creatorcontrib>Zamponi, Nicola</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhariwal, Gaurav</au><au>Jüngel, Ansgar</au><au>Zamponi, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global martingale solutions for a stochastic population cross-diffusion system</atitle><jtitle>arXiv.org</jtitle><date>2018-06-04</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and Jakubowski's generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia's truncation method due to Chekroun, Park, and Temam.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1806.01124</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073351519 |
source | Publicly Available Content Database |
subjects | Diffusion Galerkin method Hilbert space Martingales Matrix methods Tightness |
title | Global martingale solutions for a stochastic population cross-diffusion system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20martingale%20solutions%20for%20a%20stochastic%20population%20cross-diffusion%20system&rft.jtitle=arXiv.org&rft.au=Dhariwal,%20Gaurav&rft.date=2018-06-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1806.01124&rft_dat=%3Cproquest%3E2073351519%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-a51e6069226c814350ad1ef1d6ac818e6bf2d0fb06244fd6e509653abf2008063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2073351519&rft_id=info:pmid/&rfr_iscdi=true |