Loading…
Long short-term memory networks in memristor crossbars
Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models with significantly increased complexity and a large number of parameters, however, have a bottleneck in computing power r...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models with significantly increased complexity and a large number of parameters, however, have a bottleneck in computing power resulting from limited memory capacity and data communication bandwidth. Here we demonstrate experimentally that LSTM can be implemented with a memristor crossbar, which has a small circuit footprint to store a large number of parameters and in-memory computing capability that circumvents the 'von Neumann bottleneck'. We illustrate the capability of our system by solving real-world problems in regression and classification, which shows that memristor LSTM is a promising low-power and low-latency hardware platform for edge inference. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1805.11801 |