Loading…
Segmentation of Liver Lesions with Reduced Complexity Deep Models
We propose a computationally efficient architecture that learns to segment lesions from CT images of the liver. The proposed architecture uses bilinear interpolation with sub-pixel convolution at the last layer to upscale the course feature in bottle neck architecture. Since bilinear interpolation a...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a computationally efficient architecture that learns to segment lesions from CT images of the liver. The proposed architecture uses bilinear interpolation with sub-pixel convolution at the last layer to upscale the course feature in bottle neck architecture. Since bilinear interpolation and sub-pixel convolution do not have any learnable parameter, our overall model is faster and occupies less memory footprint than the traditional U-net. We evaluate our proposed architecture on the highly competitive dataset of 2017 Liver Tumor Segmentation (LiTS) Challenge. Our method achieves competitive results while reducing the number of learnable parameters roughly by a factor of 13.8 compared to the original UNet model. |
---|---|
ISSN: | 2331-8422 |