Loading…
Fast Iterative Tomographic Wave-front Estimation with Recursive Toeplitz Reconstructor Structure for Large Scale Systems
Tomographic wave-front reconstruction is the main computational bottleneck to realize real-time correction for turbulence-induced wave-front aberrations in future laser-assisted tomographic adaptive-optics (AO) systems for ground-based Giant Segmented Mirror Telescopes (GSMT), because of its unprece...
Saved in:
Published in: | arXiv.org 2018-06 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tomographic wave-front reconstruction is the main computational bottleneck to realize real-time correction for turbulence-induced wave-front aberrations in future laser-assisted tomographic adaptive-optics (AO) systems for ground-based Giant Segmented Mirror Telescopes (GSMT), because of its unprecedented number of degrees of freedom, \(N\), i.e. the number of measurements from wave-front sensors (WFS). In this paper, we provide an efficient implementation of the minimum-mean-square error (MMSE) tomographic wave-front reconstruction mainly useful for some classes of AO systems not requiring a multi-conjugation, such as laser-tomographic AO (LTAO), multi-object AO (MOAO) and ground-layer AO (GLAO) systems, but also applicable to multi-conjugate AO (MCAO) systems. This work expands that by R. Conan [ProcSPIE, 9148, 91480R (2014)] to the multi-wave-front, tomographic case using natural and laser guide stars. The new implementation exploits the Toeplitz structure of covariance matrices used in a MMSE reconstructor, which leads to an overall \(O(N\log N)\) real-time complexity compared to \(O(N^2)\) of the original implementation using straight vector-matrix multiplication. We show that the Toeplitz-based algorithm leads to 60\,nm rms wave-front error improvement for the European Extremely Large Telescope Laser-Tomography AO system over a well-known sparse-based tomographic reconstruction, but the number of iterations required for suitable performance is still beyond what a real-time system can accommodate to keep up with the time-varying turbulence |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1806.07938 |