Loading…
Half-metallicity in honeycomb-kagome-lattice Mg3C2 monolayer with carrier doping
To obtain high-performance spintronic devices with high integration density, two-dimensional (2D) half-metallic materials are eagerly pursued all along. Here, we propose a stable 2D material with a honeycomb-kagome lattice, i.e., the Mg3C2 monolayer, based on first-principles calculations. This mono...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To obtain high-performance spintronic devices with high integration density, two-dimensional (2D) half-metallic materials are eagerly pursued all along. Here, we propose a stable 2D material with a honeycomb-kagome lattice, i.e., the Mg3C2 monolayer, based on first-principles calculations. This monolayer is an anti-ferromagnetic (AFM) semiconductor at its ground state. We further demonstrate that a transition from AFM semiconductor to ferromagnetic half-metal in this 2D material can be induced by carrier (electron or hole) doping. This magnetic transition can be understood by the Stoner criterion. In addition, the half-metallicity arises from the 2pz orbitals of the carbon (C) atoms for the electron-doped system, but from the C 2px and 2py orbitals for the case of hole doping. Our findings highlight a new promising material with controllable magnetic and electronic properties toward 2D spintronic applications. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1712.08985 |