Loading…
On the three-legged accessibility property
We show that certain types of the three-legged accessibility property of a partially hyperbolic diffeomorphism imply the existence of a unique minimal set for one strong foliation and the transitivity of the other one. In case the center dimension is one, we also give a criteria to obtain three-legg...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that certain types of the three-legged accessibility property of a partially hyperbolic diffeomorphism imply the existence of a unique minimal set for one strong foliation and the transitivity of the other one. In case the center dimension is one, we also give a criteria to obtain three-legged accessibility in a robust way. We show some applications of our results to the time-one map of Anosov flows, skew products and certain Anosov diffeomorphisms with partially hyperbolic splitting. |
---|---|
ISSN: | 2331-8422 |