Loading…
Block diagonal dominance of matrices revisited: bounds for the norms of inverses and eigenvalue inclusion sets
We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this gen...
Saved in:
Published in: | arXiv.org 2018-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We generalize the bounds on the inverses of diagonally dominant matrices obtained in [16] from scalar to block tridiagonal matrices. Our derivations are based on a generalization of the classical condition of block diagonal dominance of matrices given by Feingold and Varga in [11]. Based on this generalization, which was recently presented in [3], we also derive a variant of the Gershgorin Circle Theorem for general block matrices which can provide tighter spectral inclusion regions than those obtained by Feingold and Varga. |
---|---|
ISSN: | 2331-8422 |