Loading…
LTV-MPC for Yaw Rate Control and Side Slip Control with Dynamically Constrained Differential Braking
In this paper a novel vehicle lateral dynamic control approach is presented. A differential braking control law based on vehicle planar motion has been designed using a two-degrees-of-freedom vehicle model. On the basis of the estimate of tire longitudinal forces we estimate the range of lateral for...
Saved in:
Published in: | European journal of control 2009, Vol.15 (3-4), p.468-479 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper a novel vehicle lateral dynamic control approach is presented. A differential braking control law based on vehicle planar motion has been designed using a two-degrees-of-freedom vehicle model. On the basis of the estimate of tire longitudinal forces we estimate the range of lateral forces which the tire can exert. Using this constraints a model predictive control (MPC) based on a two-track model is designed in order to stabilize the vehicle. The performances are estimated comparing the results with standard manoeuvers. Simulation results show the benefits of the control methodology used: in particular we show how very effective distribution of braking torque are obtained as a result of this feedback policy. |
---|---|
ISSN: | 0947-3580 1435-5671 |
DOI: | 10.3166/ejc.15.468-479 |