Loading…
Sharp phase transition for the random-cluster and Potts models via decision trees
We prove an inequality on decision trees on monotonic measures which generalizes the OSSS inequality on product spaces. As an application, we use this inequality to prove a number of new results on lattice spin models and their random-cluster representations. More precisely, we prove that 1. For the...
Saved in:
Published in: | arXiv.org 2018-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove an inequality on decision trees on monotonic measures which generalizes the OSSS inequality on product spaces. As an application, we use this inequality to prove a number of new results on lattice spin models and their random-cluster representations. More precisely, we prove that 1. For the Potts model on transitive graphs, correlations decay exponentially fast for \(\beta |
---|---|
ISSN: | 2331-8422 |