Loading…
Generic metrics satisfy the generic condition
We prove that the "generic condition" used in singularity theorems of general relativity is generic in the space of Lorentzian metrics on a given manifold, in the sense that it is satisfied for all metrics in a residual set in the Whitney \(C^k\)-topology, for \(k\) depending on the dimens...
Saved in:
Published in: | arXiv.org 2017-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the "generic condition" used in singularity theorems of general relativity is generic in the space of Lorentzian metrics on a given manifold, in the sense that it is satisfied for all metrics in a residual set in the Whitney \(C^k\)-topology, for \(k\) depending on the dimension of the manifold. |
---|---|
ISSN: | 2331-8422 |