Loading…
Bondi Accretion in Trumpet Geometries
The Bondi solution, which describes the radial inflow of a gas onto a non-rotating black hole, provides a powerful test for numerical relativistic codes. However, the Bondi solution is usually derived in Schwarzschild coordinates, which are not well suited for dynamical spacetime evolutions. Instead...
Saved in:
Published in: | arXiv.org 2017-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Bondi solution, which describes the radial inflow of a gas onto a non-rotating black hole, provides a powerful test for numerical relativistic codes. However, the Bondi solution is usually derived in Schwarzschild coordinates, which are not well suited for dynamical spacetime evolutions. Instead, many current numerical relativistic codes adopt moving-puncture coordinates, which render black holes in trumpet geometries. Here we transform the Bondi solution into trumpet coordinates, which result in regular expressions for the fluid flow extending into the black-hole interior. We also evolve these solutions numerically and demonstrate their usefulness for testing and calibrating numerical codes. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1607.03047 |